Ed Merkle, Achim Zeileis

Proposed Tests Illustration

Conclusions

Generalized Measurement Invariance Tests for Factor Analysis

Ed Merkle¹ Achim Zeileis²

 $^1 {\sf University}$ of Missouri

 $^{2}{\sf Universit\"at\ Innsbruck}$

Supported by grant SES-1061334 from the U.S. National Science Foundation

Measurement Invariance

Ed Merkle, Achim Zeileis

Background

lests

Conclusions

Measurement Invariance

Measurement

Invariance

Ed Merkle,

Achim Zeileis

Background

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

- Measurement invariance: Sets of tests/items consistently assigning scores across diverse groups of individuals.
- Notable violations of measurement invariance:
 - SAT for different ethnic groups (Atkinson, 2001)
 - Intelligence tests & the Flynn effect (Wicherts et al., 2004)

Example (Age \leq 16)

Ed Merkle. Achim Zeileis

Background

 $\lambda_{52} = 4$

 $\lambda_{62} = 7$

MV5

MV6

Measurement

Invariance

Measurement

Invariance

Ed Merkle,

Achim Zeileis

Background

- Hypothesis of "full" measurement invariance:

$$H_0: \boldsymbol{\theta}_i = \boldsymbol{\theta}_0, i = 1, \dots, n$$

$$H_1: \text{Not all the } \boldsymbol{\theta}_i = \boldsymbol{\theta}_0$$

where $\boldsymbol{\theta}_i = (\lambda_{i,1,1}, \dots, \psi_{i,1,1}, \dots, \varphi_{i,1,2})^{\top}$ is the full *p*-dimensional parameter vector for individual *i*.

Hypotheses

Age

Measurement Invariance Ed Merkle,

Achim Zeileis

Background

Hypotheses

 $\Psi_{55} = 9$

 $\Psi_{66} = 22$

E5

E6

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

• H_0 from the previous slide is difficult to fully assess due to all the ways by which individuals may differ.

• We typically place people into groups based on a meaningful auxiliary variable, then study measurement invariance across those groups (via Likelihood Ratio tests, Lagrange multiplier tests, Wald tests).

• If we did not know the groups in advance, we could conduct a LR or LM test for each possible grouping, then take the maximum. Requires different critical values! (Can be obtained from proposed tests.)

Ed Merkle, Achim Zeileis

Proposed Tests

llustration

Proposed Tests

Measurement

Invariance

Ed Merkle.

Proposed

Tests

Achim Zeileis

Measurement

Invariance

Ed Merkle,

Achim Zeileis

Proposed

Tests

- In contrast to existing tests of measurement invariance, the proposed tests offer the abilities to:
 - Test for measurement invariance when groups are ill-defined (e.g., when the grouping variable is continuous).
 - Test for measurement invariance in any subset of model parameters.
 - Interpret the nature of measurement invariance violations.

Measurement Invariance

Ed Merkle, Achim Zeileis

Proposed

Tests

Conclusions

- Under measurement invariance, parameter estimates should roughly describe everyone equally well. So people's
- scores should fluctuate around zero.
- If measurement invariance is violated, the scores should stray from zero.

• The proposed family of tests rely on first derivatives of the model's log-likelihood function.

Proposed Tests

 We consider individual terms (*scores*) of the gradient. These scores tell us how well a particular parameter describes a particular individual.

$$\sum_{i=1}^{n} s(\hat{\theta}; \mathbf{x}_{i}) = \mathbf{0}, \text{ where}$$
$$s(\hat{\theta}; \mathbf{x}_{i}) = \frac{\partial}{\partial \theta} \log L(\mathbf{x}_{i}, \theta) \big|_{\theta = \widehat{\theta}}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 めんぐ

Aggregating Scores

- We need a way to aggregate scores across people so that we can draw some general conclusions.
 - Order individuals by an auxiliary variable.
 - Define *t* ∈ (1/*n*, *n*). The *empirical cumulative score* process is defined by:

$$\mathbf{B}(\hat{\theta};t) = \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor nt \rfloor} s(\hat{\theta};\mathbf{x}_i)$$

where $\lfloor nt \rfloor$ is the integer part of *nt*.

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ ○ 豆 ○ の Q ()

Proposed Tests

Ed Merkle, Achim Zeileis

Proposed Tests

Conclusions

Measurement

Invariance

Ed Merkle,

Achim Zeileis

Proposed Tests

Tests

• Under the hypothesis of measurement invariance, a functional central limit theorem holds:

 $\mathbf{I}(\widehat{\theta})^{-1/2}\mathbf{B}(\widehat{\theta};\cdot) \stackrel{d}{\to} \mathbf{B}^{0}(\cdot),$

where $\mathbf{I}(\hat{\theta})$ is the observed information matrix and $\mathbf{B}^{0}(\cdot)$ is a *p*-dimensional Brownian bridge.

- Testing procedure: Compute an aggregated statistic of the empirical score process and compare with corresponding quantile of aggregated Brownian motion.
- Test statistics: Special cases include double maximum (DM), Cramér-von Mises (CvM), maximum of LM statistics.

Measurement Invariance Ed Merkle, Achim Zeileis Background

Measurement

Invariance

Ed Merkle,

Achim Zeileis

Illustration

Proposed Tests

- Simulation: What is the power of the proposed tests?
 - Two-factor model, with three indicators each.
 - Measurement invariance violation in three factor loading parameters, with magnitude from 0–4 standard errors.
 - Sample size in {100, 200, 500}.
 - Model parameters tested in $\{3, 19\}$.
 - Three test statistics.

Simulation

Example

• Example: Studying stereotype threat via factor analysis (Wicherts et al., 2005)

- Stereotype threat: Knowledge of stereotypes about one's social group might cause one to fulfill the stereotypes.
- Wicherts et al. study: 295 students were administered three intelligence tests. Stereotypes were primed for half of the students.
- Groups defined by: Ethnicity (majority/minority) and whether or not stereotypes were primed.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Ed Merkle. Achim Zeileis

Illustration

Aggregated Results

Aggregated Process, max LM

• To carry out the tests, we utilize

lavaan for model estimation.

Measurement Invariance

Ed Merkle, Achim Zeileis

Conclusions

Software

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Achim Zeileis

Measurement

Invariance

Ed Merkle,

- Conclusions
- estfun() for score extraction, which is currently a combination of our own code and lavaan code.
- strucchange for carrying out the proposed tests with the scores.
 - Required input: Fitted model, function for score extraction, and information matrix (optional).
 - gefp() constructs the process.
 - sctest() and plot() calculate and visualize test statistics.

Invariance Ed Merkle. Achim Zeileis

Measurement

Conclusions

Conclusions

- Measurement invariance tests utilizing stochastic processes have important advantages over existing tests:
 - Isolating specific parameters that violate measurement invariance, allowing the researcher to define specific types of measurement invariance "post hoc" instead of "a priori".
 - Isolating groups of individuals whose parameter values differ.
 - Studying the impact of continuous variables on model estimates, without "ruining" the rest of the model.
- Power is reasonable, with specific tests being better in specific circumstances.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Current Work

- Continued test implementation via strucchange and lavaan (and possibly OpenMx).
- Detailed examination of test properties.
- Extension to related psychometric issues.
- Working paper: http://econpapers.repec.org/RePEc:inn:wpaper: 2011 - 09

Ed Merkle, Achim Zeileis

Background

Proposed Tests

Conclusions

• Questions?

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 < つ < ぐ</p>