

Dealing with Artificially Dichotomized Variables in Meta-Analytic Structural Equation Modeling

Hannelies de Jonge, Suzanne Jak, & Kees Jan Kan University of Amsterdam M.deJonge@uva.nl

Psychoco 2020: International Workshop on Psychometric Computing

Meta-analysis

- \times To systematically synthesize all the empirical studies that are published
- X MASEM (Becker, 1992, 1995; Viswesvaran & Ones, 1995)
 - × Testing a complete hypothesized model
 - × Provides parameter estimates & overall model fit
 - × Stage 1: Pooling correlation coefficients in a matrix
 - × Stage 2: Hypothesized model fitted to a pooled correlation matrix using SEM
- × How to deal with primary studies in which variables have been artificially dichotomized?

Artificial dichotomization

X Dichotomous Continuous Variable

- \times Dichotomous variable
 - × Natural or artificial
- × Often argued against artificial dichotomization (e.g., Cohen, 1983; MacCallum et al., 2002)
- × Meta-analysists frequently have to deal with artificially dichotomized variables in primary studies

Estimating a pooled correlation matrix

× Primary studies may report different kinds of effect sizes

 \times One needs to express the bivariate effect sizes as correlation coefficients

- \times Based on information provided in primary studies
 - × The **point-biserial** and **biserial** correlation can be calculated

The (point-)biserial correlation

- × Meta-analysist may not be aware of the difference
- × Point-biserial correlation (Lev, 1949; Tate, 1954)
 - × Association between natural dichotomous and continuous variable
- **× Biserial** correlation (Pearson, 1909)
 - × Assumes a continuous, normally distributed variable underlying the dichotomous variable

× Previous research

Aim

× Investigate the effects of using (1) the point-biserial correlation and (2) the biserial correlation for the relationship between an artificially dichotomized variable and a continuous variable on MASEM-parameters and model fit.

Simulation study 1: full mediation

- \times Choices mainly based on typical situations in educational research
- \times Population model with fixed parameter values

- \times Systematically varied:
 - × Percentage of dichotomization (25%, 75%, 100%)
 - × Size of β_{MX} (.16, .23, .33) (de Jonge & Jak, 2018)
 - × Cut-off point of dichotomization (.5, .1)
- × Number of primary studies: 44 (de Jonge & Jak, 2018)
- Within primary study sample sizes: randomly sampled from a positively skewed distribution (Hafdahl, 2007) with a mean of 421.75 (de Jonge & Jak, 2018)
- × 39% missing correlations (Sheng, Kong, Cortina, & Hou, 2016)
- × In each condition, we generated 2000 meta-analytic datasets
- × Random-effects two stage structural equation modeling (Cheung, 2014)

Simulation study 2: partial mediation

 \times Population model with fixed parameter values

 \times Same conditions as in the first simulation study

Relative percentage bias in β_{MX}

× Point-biserial correlation:

- \times Full mediation: -41.70% to -5.05%
- \times Partial mediation: -41.68% to -5.05%

× > 5% (Hoogland & Boomsma, 1998) $\rightarrow \beta_{MX}$ seems systematically underestimated

× Biserial correlation:

- \times Full mediation: -0.36% to 0.35%
- \times Partial mediation: -0.42% to 0.25%
 - × < 5% (Hoogland & Boomsma, 1998) \rightarrow No substantial bias in β_{MX}

Relative percentage bias in β_{YM}

- × Full mediation
 - × Point-biseral & Biserial: < 5% (Hoogland & Boomsma, 1998)
 - × No substantial bias in β_{YM}
- × Partial mediation
 - \times **Point-biseral:** 1.17% to 15.56% (in 10 of the 18 conditions > 5%)
 - × β_{YM} seems systematically overestimated
 - × **Biserial:** -0.36% to 0.47%
 - × < 5% (Hoogland & Boomsma, 1998) \rightarrow No substantial bias in β_{YM}

Relative percentage bias in β_{YX}

× Point-biserial correlation:

 $\times -45.85\%$ to -5.30%

× > 5% (Hoogland & Boomsma, 1998) $\rightarrow \beta_{YX}$ seems systematically underestimated

× Biserial correlation:

× -0.54% to -0.80%× <5% (Hoogland & Boomsma, 1998) \rightarrow No substantial bias in β_{YX}

× Indirect effects

Relative percentage bias in standard errors

- × **Point-biserial & Biserial:** β_{MX} , β_{YM} , and β_{YX} typically < 10% (Hoogland & Boomsma, 1998)
- × **Biserial** $\rightarrow \beta_{MX}$ and β_{YM} seems systematically negative
- × **Point-biserial** $\rightarrow \beta_{\text{YM}}$ seems systematically negative

Some possible causes

- × **Biserial** correlation \rightarrow negative bias in *SE* of β_{MX}
 - \times Used formulas for estimating the sampling (co)variances
 - Generally leads to an underestimation of the true sampling variance (Jacobs & Viechtbauer, 2017)
- × **Biserial & point-biserial** correlation \rightarrow negative bias in *SE* of β_{YM}
 - \times When the data were not dichotomized at all
 - \times The SEs of the pooled correlation coefficients between M and Y in Stage 1
 - × Sampling (co)variances from the primary studies are treated as known in MASEM
 - × Underestimation in standard errors in univariate random-effects meta-analysis (Sánchez-Meca & Marín-Martínez, 2008; Viechtbauer, 2005)
- × Note \rightarrow bias was typically within the limit of 10%

Conclusion

- × We advise researchers who want to apply MASEM and want to investigate mediation to convert the effect size between any artificially dichotomized predictor and continuous variable to a:
 - × Biserial correlation

Thank you!

Any questions?

H.deJonge@uva.nl

Do you want to read the whole article?

Please see https://osf.io/j6nxt/