# Residual Information for Absolute Model Fit 

Feb 2020

Charles Driver
May Planck Institute for Human Development

## — $\quad 4$ Motivation

- Put bluntly...
- Put bluntly...
- Modelling in psychology is too often concerned about the Emperors' new shoelaces,
- Put bluntly...
- Modelling in psychology is too often concerned about the Emperors' new shoelaces,
- while he's running around naked,
- Put bluntly...
- Modelling in psychology is too often concerned about the Emperors' new shoelaces,
- while he's running around naked,
- in the cold,
- Put bluntly...
- Modelling in psychology is too often concerned about the Emperors' new shoelaces,
- while he's running around naked,
- in the cold,
- without a head.
- Put bluntly...
- Modelling in psychology is too often concerned about the Emperors' new shoelaces,
- while he's running around naked,
- in the cold,
- without a head.
- Put differently:
- Put bluntly...
- Modelling in psychology is too often concerned about the Emperors' new shoelaces,
- while he's running around naked,
- in the cold,
- without a head.
- Put differently:
. Precision and specific forms of misspecification are sometimes overemphasised,
- Put bluntly...
- Modelling in psychology is too often concerned about the Emperors' new shoelaces,
- while he's running around naked,
- in the cold,
- without a head.
- Put differently:
- Precision and specific forms of misspecification are sometimes overemphasised,
- other, potentially more substantial, forms of misspecification go undetected because they are orthogonal to the modelling approach.
- Put bluntly...
- Modelling in psychology is too often concerned about the Emperors' new shoelaces,
- while he's running around naked,
- in the cold,
- without a head.
- Put differently:
- Precision and specific forms of misspecification are sometimes overemphasised,
- other, potentially more substantial, forms of misspecification go undetected because they are orthogonal to the modelling approach.
- I hope we can improve on this by approaching model fit differently.
- . Model fit - simple, deterministic
- Straightforward with simple, deterministic systems and yes / no questions - prediction errors that can't be explained by instrumentation imply the model is inadequate.

- Not so straightforward when we know in advance the model is imperfect.

- Not so straightforward when we know in advance the model is imperfect.
- What is 'wrong' with this model?

- Not so straightforward when we know in advance the model is imperfect.
- What is 'wrong' with this model?
- Bad predictions for new data in some conditions.

- Not so straightforward when we know in advance the model is imperfect.
- What is 'wrong' with this model?
- Bad predictions for new data in some conditions.
- Interpreted carefully, it offers extremely limited insight into the phenomenon and makes poor use of data.

- Not so straightforward when we know in advance the model is imperfect.
- What is 'wrong' with this model?
- Bad predictions for new data in some conditions.
- Interpreted carefully, it offers extremely limited insight into the phenomenon and makes poor use of data.
- Interpreted loosely, it leads to crazy inferences.

- Not so straightforward when we know in advance the model is imperfect.
- What is 'wrong' with this model?
- Bad predictions for new data in some conditions.
- Interpreted carefully, it offers extremely limited insight into the phenomenon and makes poor use of data.
- Interpreted loosely, it leads to crazy inferences.
- Uncertainty about the parameter tells us nothing about the 'trueness' of the parameter.



## - How to quantify model fit then?

- Lots of technical concerns, but at base:



## - How to quantify model fit then?

- Lots of technical concerns, but at base:
- How well does the fitted model predict new data?

- Lots of technical concerns, but at base:
- How well does the fitted model predict new data?
- How well do alternative models predict new data?

- | What should the alternative models be?


## What should the alternative models be?

Theory based:

- Theory based:
- Contrast with competing models - likelihood / evidence, information criteria, cross validation.
- Theory based:
- Contrast with competing models - likelihood / evidence, information criteria, cross validation.
- Tells us how much better our model is, but not whether it's actually any good.
- Theory based:
- Contrast with competing models - likelihood / evidence, information criteria, cross validation.
- Tells us how much better our model is, but not whether it's actually any good.
- Data based:
- Theory based:
- Contrast with competing models - likelihood / evidence, information criteria, cross validation.
- Tells us how much better our model is, but not whether it's actually any good.
- Data based:
- Arbitrary 'standard' model - e.g. saturated covariance matrix.


## $\geq \geq$

Take some structuring of data.


- Take some structuring of data.
- Estimate covariance matrix.

- Take some structuring of data.
- Estimate covariance matrix.
- Compare saturated model with our model - obtain estimate of distance from saturated model.

- Take some structuring of data.
- Estimate covariance matrix.
- Compare saturated model with our model - obtain estimate of distance from saturated model.
- If the true model can be represented by some covariance matrix of our data structure, we have estimate of distance from true model.

- Take some structuring of data.
- Estimate covariance matrix.
- Compare saturated model with our model - obtain estimate of distance from saturated model.
- If the true model can be represented by some covariance matrix of our data structure, we have estimate of distance from true model.
- Otherwise, we just have estimate of distance from best linear model given our arbitrary data structuring.

- © |My data structure? Arbitrary!?






## - - Marginal covariance fit

- Easy to obtain 'perfect' fit wrt saturated covariance.

- Easy to obtain 'perfect' fit wrt saturated covariance.
- Saturated covariance is very free in some regards, very limited in others, highly dependent on data structure - not a great metric.

- Easy to obtain 'perfect' fit wrt saturated covariance.
- Saturated covariance is very free in some regards, very limited in others, highly dependent on data structure - not a great metric.
- Can we do better?

- A Alternative approaches:



## $=2$

- Posterior predictive checks:


- Posterior predictive checks:
- Decide on quantities of interest


- Posterior predictive checks:
- Decide on quantities of interest
- Compare quantities from empirical data to randomly generated data from model.



- Posterior predictive checks:
- Decide on quantities of interest
- Compare quantities from empirical data to randomly generated data from model.
- Useful but not very general requires re-thinking for each model.



- Posterior predictive checks:
- Decide on quantities of interest
- Compare quantities from empirical data to randomly generated data from model.
- Useful but not very general requires re-thinking for each model.


- Residual checks:

- Posterior predictive checks:
- Decide on quantities of interest
- Compare quantities from empirical data to randomly generated data from model.
- Useful but not very general requires re-thinking for each model.


- Residual checks:
- Visually check residuals from fit for patterns, some specific tests.

- Posterior predictive checks:
- Decide on quantities of interest
- Compare quantities from empirical data to randomly generated data from model.
- Useful but not very general requires re-thinking for each model.


- Residual checks:
- Visually check residuals from fit for patterns, some specific tests.
- Useful, good guide to improving model, but: non-general, too much of an art, typically univariate.

-     - New? idea - residual information criteria
- If we knew and fit the true / best model, residuals will be random contain no information wrt our data.

- y1
$\times \quad \mathrm{y} 1$ error
-     - y1 linear fit
- y2
- y 2 error
-     - y2 linear fit
- If we knew and fit the true / best model, residuals will be random contain no information wrt our data.
- Therefore, information that our residuals do contain, can be used to quantify distance from best possible model.

- y 1
$\times \quad \mathrm{y} 1$ error
-     - y1 linear fit
- y2
- y2 error
-     - y2 linear fit


## A How to quantify residual information?

Would be easy if we knew the true model!

- Would be easy if we knew the true model!
- Need some general function to detect and quantify structure in data.
- Shannon differential entropy, $H$, is a scale dependent measure of information content of a variable - negative expectation of log probability.

- Shannon differential entropy, $H$, is a scale dependent measure of information content of a variable - negative expectation of log probability.
- Mutual information, $I(X, Y)=H(X)+H(Y)-H(X, Y)$, quantifies information shared by X and Y .

- Shannon differential entropy, $H$, is a scale dependent measure of information content of a variable - negative expectation of log probability.
- Mutual information, $I(X, Y)=H(X)+H(Y)-H(X, Y)$, quantifies information shared by X and Y .
- Conditional entropy, $H(X \mid Y)=H(X)-I(X, Y)$, quantifies information unique to X with respect to Y .

- Mutual information (nonlinear covariance) between residuals, expectations, and any additional covariates.

- Mutual information (nonlinear covariance) between residuals, expectations, and any additional covariates.
- Output:

- Mutual information (nonlinear covariance) between residuals, expectations, and any additional covariates.
- Output:
- Proportion of residual information able to be predicted from the data model 'wrongness'.

- Mutual information (nonlinear covariance) between residuals, expectations, and any additional covariates.
- Output:
- Proportion of residual information able to be predicted from the data model 'wrongness'.
- Where there is shared information between data and residuals - model can be improved.

- Accurate entropy estimates of some 'ideal' model, based on the original data, are not an easy problem, but:
- Accurate entropy estimates of some 'ideal' model, based on the original data, are not an easy problem, but:
- We can base estimates from the residuals instead, leveraging the initial model.
- Accurate entropy estimates of some 'ideal' model, based on the original data, are not an easy problem, but:
- We can base estimates from the residuals instead, leveraging the initial model.
- Relative differences are sufficient to provide some guide as to goodness of fit.
- Accurate entropy estimates of some 'ideal' model, based on the original data, are not an easy problem, but:
- We can base estimates from the residuals instead, leveraging the initial model.
- Relative differences are sufficient to provide some guide as to goodness of fit.
- Overfitting can be handled either by overfitting baseline estimates in a similar fashion, or cross validation.
- Residual fit measure gets worse as informative covariates are included because best possible model gets better.
- Residual fit measure gets worse as informative covariates are included because best possible model gets better.
- Doesn't distinguish mean / variance or directionality - further diagnostics probably helpful.
- Residual fit measure gets worse as informative covariates are included because best possible model gets better.
- Doesn't distinguish mean / variance or directionality - further diagnostics probably helpful.
- Current plan: R software to provide fit / diagnostics for arbitrary statistical model.
- Model fit is important if our parameters are to mean anything.
- Model fit is important if our parameters are to mean anything.
- Current metrics are very good in some regards...
- Model fit is important if our parameters are to mean anything.
- Current metrics are very good in some regards...
- But are not great at telling us how close we are to the best model.
- Model fit is important if our parameters are to mean anything.
- Current metrics are very good in some regards...
- But are not great at telling us how close we are to the best model.
- Simplifying and quantifying residual analysis, for multivariate systems, hopefully:
- Model fit is important if our parameters are to mean anything.
- Current metrics are very good in some regards...
- But are not great at telling us how close we are to the best model.
- Simplifying and quantifying residual analysis, for multivariate systems, hopefully:
- Makes model improvement easier.
- Model fit is important if our parameters are to mean anything.
- Current metrics are very good in some regards...
- But are not great at telling us how close we are to the best model.
- Simplifying and quantifying residual analysis, for multivariate systems, hopefully:
- Makes model improvement easier.
- Makes it more obvious when results are from poor models.
- Model fit is important if our parameters are to mean anything.
- Current metrics are very good in some regards...
- But are not great at telling us how close we are to the best model.
- Simplifying and quantifying residual analysis, for multivariate systems, hopefully:
- Makes model improvement easier.
- Makes it more obvious when results are from poor models.
- Helps bridge some of the performance divide between prediction oriented and explanation oriented approaches.

