A two-step procedure for scaling multilevel data using Mokken's scalability coefficients

Letty Koopman, Bonne J. H. Zijlstra, L. Andries van der Ark

University of Amsterdam

V.E.C.Koopman@UvA.nl

February 27, 2020

Item scores of respondents nested in groups:

Scaling Multilevel Data

Scaling Multilevel Data

= 200

Scale well-being with teachers:

- The teachers usually know how I feel
- I can talk about problems with the teachers
- If I feel unhappy, I can talk to the teachers about it
- I feel at ease with the teachers
- The teachers understand me
- I have good contact with the teachers
- I would prefer to have other teachers (reversely scored)

Scored 1 (not true at all) to 5 (completely true)

Scale well-being with teachers:

- The teachers usually know how I feel
- I can talk about problems with the teachers
- If I feel unhappy, I can talk to the teachers about it
- I feel at ease with the teachers
- The teachers understand me
- I have good contact with the teachers
- I would prefer to have other teachers (reversely scored)

Scored 1 (not true at all) to 5 (completely true)

Original data: 16,297 students in 814 classes in 94 schools (COOL5-18) Our subset: 651 students in 30 classes/schools **Scalability**: Can we accurately order respondents on the latent concept *well-being with teachers*, using the test score?

Goal: Investigate the scalability of the items in multilevel test data using Mokken's scalability coefficients.

Mokken's Scalability Coefficients

Scalability coefficients for item-pairs (H_{ij}) , items (H_i) , and total scale (H)

- No relation between items $i, j: H_{ij} = 0$
- Perfect relation between items $i, j: H_{ij} = 1$

Mokken's Scalability Coefficients

Scalability coefficients for item-pairs (H_{ij}) , items (H_i) , and total scale (H)

- No relation between items $i, j: H_{ij} = 0$
- Perfect relation between items $i, j: H_{ij} = 1$

What is a Mokken scale?

- All $H_{ii} > 0$
- All $H_i \ge c$ (e.g., c = 0.3)

Mokken's Scalability Coefficients

Scalability coefficients for item-pairs (H_{ij}) , items (H_i) , and total scale (H)

- No relation between items $i, j: H_{ij} = 0$
- Perfect relation between items $i, j: H_{ij} = 1$

What is a Mokken scale?

- All $H_{ij} > 0$
- All $H_i \ge c$ (e.g., c = 0.3)

Strength of a Mokken scale

- $H \ge .3$ Weak scale
- $H \ge .4$ Medium scale
- $H \ge .5$ Strong scale

Stronger scale = more accurate ordering

Problem: Only traditional estimation methods available for H and SE

- Assumes simple random sample from the population
- Underestimated standard errors
- Confidence intervals too narrow

Possible concequences:

- Incorrectly admitting items to the final scale
- Overestimating the quality of the scale

Needed: Two-level estimation methods for H and SE

- Inspired by multi-rater data (scaling of groups)
- Within-rater scalability coefficient H^W similar to Mokken's H
- Negligible bias and good coverage of estimators
- Problem with unequal group sizes: \widehat{SE} too large
 - Estimation used averaged proportions across groups
 - Adjustment: Use proportions weighted for group size

Needed: Two-level estimation methods for H and SE

- Inspired by multi-rater data (scaling of groups)
- Within-rater scalability coefficient H^W similar to Mokken's H
- Negligible bias and good coverage of estimators
- Problem with unequal group sizes: \widehat{SE} too large
 - Estimation used averaged proportions across groups
 - Adjustment: Use proportions weighted for group size

Solution: Use adjusted version of within-rater estimation method.

Leads to: identical \widehat{H} as one-level method, but different \widehat{SE} (and CI).

Performance of the Methods

Simulation design: ICC, number of groups, group size

Performance of the Methods

Simulation design: ICC, number of groups, group size

Point estimate H: Unbiased in all conditions

Simulation design: ICC, number of groups, group size

Point estimate H: Unbiased in all conditions

Standard errors:

- One-level bias $-.013 \approx -35\%$ Worse for larger groups and larger ICCs
- Two-level bias .003 ≈ 7% Unequal group size no longer affected two-level bias Conservative for small ICC and very small groups Slightly underestimated for only 10 groups and large ICC

Simulation design: ICC, number of groups, group size

Point estimate H: Unbiased in all conditions

Standard errors:

- One-level bias $-.013 \approx -35\%$ Worse for larger groups and larger ICCs
- Two-level bias .003 ≈ 7% Unequal group size no longer affected two-level bias Conservative for small ICC and very small groups Slightly underestimated for only 10 groups and large ICC

Coverage: Similar patterns as standard errors

- One-level coverage .744
- Two-level coverage .949

Two-Step Scaling Procedure for Multilevel Data

Step 1: Scalability investigation using two-level confidence intervals

- Automated item selection procedure (AISP)
- Investigate dimensionality item set: Create one or more Mokken scales
- Starts with highest \widehat{H}_{ij} and subsequently adds items
- Compares $CI(H_{ij})$ to zero and $CI(H_i)$ to c
- Use $c = 0, 0.05, 0.1, \ldots, 0.55$
- Look for relevant outcome patterns to decide on final scale

Two-Step Scaling Procedure for Multilevel Data

Step 1: Scalability investigation using two-level confidence intervals

- Automated item selection procedure (AISP)
- Investigate dimensionality item set: Create one or more Mokken scales
- Starts with highest \widehat{H}_{ij} and subsequently adds items
- Compares $CI(H_{ij})$ to zero and $CI(H_i)$ to c
- Use $c = 0, 0.05, 0.1, \ldots, 0.55$
- Look for relevant outcome patterns to decide on final scale

Step 2: Estimate and test the intraclass correlation

- Use the test score on the final scale
- Perform an F-test: Null hypothesis *ICC* = 0
- If F-test is not significant: Use one-level standard errors for final scale

ELE NOR

Necessary functions will be implemented in R-package mokken very soon! (Version 3.0, if you already want to perform the analysis or get an update when it is updated, let me know!)

- aisp(X, c = seq(0, .55, .05), two.level = TRUE, CI = TRUE): Performs AISP using a range of thresholds c and two-level confidence intervals
- MLcoefH(X, se = TRUE, weigh.props = TRUE): Two-level method for point estimates and standard errors (use only within-rater coefficients)
- ICC(X): Gives ICC estimates per item and for the total scale, with an F-test for the total scale ICC
- o coefH(X[, -1], se = TRUE): One-level method for point estimates
 and standard errors

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 のの⊙

Results for Scale Well-Being With Teachers

Step 1:

Conclusion: Use only first six items in final scale

(For 7 items:)

Step 2:

• ICC = .168, F(26, 621) = 5.08, p < .001(ICC = .170)

Conclusion: Retain two-level estimates

Resulting scale:

- All $H_i > .5$ (all $H_i > .25$) (Medium scale .493 < H < .605)
- Strong scale .563 < H < .663

- Don't use one-level standard errors for Mokken's coefficients in multilevel data!
- Use new (more accurate) two-level standard errors (but why overestimated for small ICC?)
- Perform a two-step procedure for scalability analysis in multilevel data
 Scalability analysis using two-level confidence intervals
 Investigate within-group dependency
- Scale investigation finished? No, not quite yet: Generalize methods to check nonparametric IRT model assumptions in multilevel data

Thank you!

Letty Koopman V.E.C.Koopman@UvA.nl

Letty Koopman (UvA)

Scaling Multilevel Data

February 27, 2020 14 / 14

-

- Koopman, L., Zijlstra, B. J. H., De Rooij, M. & Van der Ark, L. A., (2019). Bias of Two-Level Scalability Coefficients and Their Standard Errors. *Applied Psychological Measurement*. Advance online publication. doi: 10.1177/0146621619843821
- Koopman, L., Zijlstra, B. J. H. & Van der Ark, L. A., (2019). Standard errors of two-level scalability coefficients. British Journal of Statistical and Mathematical Psychology. Advance online publication. doi: 10.1111/bmsp.12174
- Koopman, L. Zijlstra, B. J. H, & Van der Ark, L. A. (2020). A two-step procedure for scaling multilevel data using Mokken's scalability coefficients. Manuscript in preparation.
- Mokken, R. J. (1971). A theory and procedure of scale analysis. The Hague, The Netherlands: Mouton. https://doi.org/10.1515/9783110813203
- Sijtsma, K., & Van der Ark, L. A. (2017). A tutorial on how to do a mokken scale analysis on your test and questionnaire data. British Journal of Mathematical and Statistical Psychology, 70, 137158. http://doi.org/10.1111/bmsp.12078
- Snijders, T. A. B. (2001). Two-level non-parametric scaling for dichotomous data. In A. Boomsma, M. A. J. van Duijn, & T. A. B. Snijders (Eds.), Essays on item response theory (pp. 319-338). New York, NY: Springer. doi:10.1007/978-1-4613-0169-1_17
- Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling (2nd ed.). Sage.

EL OQO

(日) (周) (三) (三)

$$\sigma^2 =$$
 population within-group variance $\tau^2 =$ population between-group variance

$$ICC = \frac{\tau^2}{\tau^2 + \sigma^2}$$

Snijders & Bosker (2012) p. 18

= 200

Let g(n) be the transformation of the frequencies of item-score patterns n, resulting in a vector with all the scalability coefficients H.

Assumption:

- Probabilities \mathbf{p} of item-score patterns \mathbf{n} differ per group
- Results in multinomial distribution per subject
- $V(\mathbf{n})^*$ is the multinomial covariance matrix of vector \mathbf{n}

•
$$V(\mathbf{n}) = V(\mathbf{n})^* + sr(r-1)V(\mathbf{p})$$

 $\mathbf{G} =$ The Jacobian of $\mathbf{g}(\mathbf{n})$ (i.e., matrix of first-order partial derivatives)

Delta method: $V(\mathbf{H}) \approx \mathbf{G} \ V(\mathbf{n}) \ \mathbf{G}^{T}$

Koopman, Zijlstra, & Van der Ark (2019)

Outcome measures:

- Bias of point estimate
- Bias of one- and two-level standard errors
- Coverage of one- and two-level 95% confidence interval

Simulation Design:

- Within-group dependency (small, medium, large, very large)
- Number of groups (10, 30, 50, 100)
- Group size
 - Equal group sizes (2, 5, 10, 20, 50, 100)
 - Unequal group sizes ([10; 30], related or unrelated to latent trait)

Bias of the Standard Error

Letty Koopman (UvA)

Scaling Multilevel Data

三日 のへの

э

Coverage of the 95% Confidence Interval

Letty Koopman (UvA)

Scaling Multilevel Data

ELE NOR

Condition	Bias \widehat{H}	Bias	$s \widehat{SE}$	Coverage CI		
		One-level	Two-level	One-level	Two-level	
Equal, 20 respondents	006	014	.003	.743	.956	
Unequal, independent	006	015	.002	.735	.930	
Unequal, dependent	013	013	.001	.716	.925	

= nar

	Seven Items			Six Items				
Item	\widehat{H}	\widehat{SE}	95% CI		\widehat{H}	\widehat{SE}	95% CI	ICC
1	.570	.033	[.506; .634]		.606	.032	[.544; .669]	.126
2	.592	.029	[.535; .649]		.635	.027	[.581; .689]	.111
3	.563	.030	[.504; .622]		.611	.029	[.555; .668]	.103
4	.606	.033	[.540; .671]		.632	.033	[.567; .696]	.142
5	.590	.030	[.532; .648]		.632	.030	[.574; .690]	.074
6	.537	.030	[.478; .596]		.561	.030	[.502; .620]	.120
7	.387	.053	[.284; .490]					
Total	.549	.029	[.493; .605]		.613	.025	[.563; .663]	.168

E SQA