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Functional data analysis

• Since the 1990s, a new class of data sets has become
common, in which the data for each individual include not
just a few measurements, but an entire curve or function.

• The term “functional data analysis” (FDA), popularized by
Ramsay and Silverman (1997, 2005), refers to
methodology for data of this type, which typically extends
classical statistical methods (regression, multivariate
analysis, etc.)
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Example: diffusion tensor imaging (DTI) data
• Each curve represents fractional anisotropy (FA),

a measure of white-matter integrity derived by DTI,
at 93 locations along the corpus callosum.
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• Color denotes PASAT (cognitive function) score—related to FA?

• 142 individuals scanned multiple times—382 observations in total.
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The R package refund* (Reiss et al., 2010; Goldsmith et al., 2019)
is a collaborative project implementing methods for

1. functional regression

• “scalar-on-function” regression: y ∼ x(s)
• “function-on-scalar” regression: y(s) ∼ x
• “function-on-function” regression: y(s) ∼ x(s)

2. functional principal component analysis

* short for REgression with FUNctional Data
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Why refund?

The original R package fda (Ramsay et al., 2009) uses penalized splines to
fit functional linear models such as

• the scalar-on-function regression model

yi = α+

∫
S

xi(s)β(s)ds + εi ,

i = 1, . . . , n (e.g., Ramsay and Silverman, 1997; Marx and Eilers, 1999),

• and the function-on-scalar (varying-coefficient) regression model

yi(s) = β0(s) + xiβ1(s) + εi(s).

Limitations:

• restricted to “vanilla” models—without multiple predictors, random
effects, extensions to generalized linear models

• smoothing parameter selection is laborious

refund lifts these restrictions.
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• Penalized splines are a popular way to fit the
nonparametric regression model

yi = f (xi) + εi , E(εi) = 0

where f is some smooth function.
• Briefly, the spline approach assumes f to be piecewise polynomial

(usually cubic), such that at the “knots” (boundaries) there are a certain
number of continuous derivatives (usually 2).

• Specifically, we take f to be a linear combination of B-splines, piecewise
polynomial functions with compact support:

f (x) = b(x)Tβ where b(x) = [b1(x), . . . , bK (x)]T ,β ∈ RK .
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• Given a spline basis, we estimate f (x) by penalized least squares, i.e.,
f̂ (x) = b(x)T β̂ minimizes

n∑
i=1

[yi − f (xi)]
2

︸ ︷︷ ︸
sum of squared errors

+ λ

∫
f ′′(x)2dx︸ ︷︷ ︸

roughness functional

over all functions of the form f (x) = b(x)Tβ.
• Choice of λ is critical:
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• Coefficient functions β(s) in functional regression are also estimated by
(more complicated) penalized least squares.

• refund implements fast automatic smoothing parameter selection via
the mgcv package (Wood, 2011, 2017).
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Regression functions in refund

Predictors

Scalar Functional

Responses
Scalar pfr

Functional fosr, fosr2s, pffr pffr

Let’s illustrate with the DTI data . . .
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Scalar-on-function regression with random subject effects (intercepts):

Pij = αi +

∫
S

FAij(s)β(s)ds + εij ,

where P is PASAT score and FA(s) is fractional anisotropy curve.
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A function-on-scalar regression model:

FAij(s) = β0(s) + Pijβ1(s) + εij(s).
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Functional PCA:
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(Brockhaus, 2016)

19 / 26



Functional data analysis Splines refund fMRI example References

Outline

Functional data analysis

Splines

refund

fMRI example

20 / 26



Functional data analysis Splines refund fMRI example References

• Lindquist (2012) analyzed functional MRI measures of response to pain
in 20 volunteers.

• Each volunteer had 39–48 trials consisting of

• hot (painful) or warm stimulus applied to left forearm (18 sec)
• a fixation cross on a screen (14 sec)
• the words “How painful?” appeared on the screen (14 sec)
• asked to rate the pain intensity on a scale from 100 to 550.

• To study whether BOLD response predicts pain, Reiss et al. (2017)
fitted the following scalar-on-function regression model:

yij = αi + γIhot
ij +

∫
T

xij(t)β(t)dt + εij , i = 1, . . . , n, j = 1, . . . , Ji ,

in which

• yij is the log pain score for the i th participant’s j th trial;
• the αi ’s are iid normally distributed random intercepts;
• Ihot

ij is an indicator for a hot stimulus;
• xij(t) is lateral cerebellum BOLD signal over the trial interval T ;
• the εij ’s are iid normally distributed errors with mean zero.

• γ found to be highly significantly positive; but what about β(t)?
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(a) Mean lateral cerebellum BOLD signal is higher for hot- than for
warm-stimulus trials, but only during fixation cross interval.

(b) Coefficient function estimate β̂(t),
with approximate pointwise 95% confidence intervals.

(c) β̂(t) for full data set, versus for only hot or only warm trials.
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Interpretation of the peak in β̂(t):
A “brain signature” for pain?

• A possible explanation is collinearity, or confounding, between
γIhot

ij (painful heat) and
∫
T xij(t)β(t)dt (BOLD signal effect).

• But since β̂(t) looks similar when restrict to each of two
temperature conditions [subfigure (c) on previous slide], it may
be that brain activity partially mediates the painful effect of the
hot stimulus.
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More to explore . . .
• The refund.shiny package (Wrobel et al., 2016) offers interactive

graphics for various analyses with functional data.

• Chapter 13 of Mair (2018) discusses function-on-scalar regression with
refund applied to psychometric data.

• The monograph of Kokoszka and Reimherr (2017) on functional data
analysis includes many refund examples.
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Thank you!

Photo: Berthold Werner
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