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1. Univariate and Multivariate Social Relations Model (SRM)

Univariate Social Relations Model (I)

actor i rates partner j in dyad d = (ij) on one variable y, e.g., ratings
on

I like person XX a lot.
I think that person XX is good at Mathematics.

social relations model (SRM)

yij = µ+ ai + pj + εij (1)

actor effects ai: how much person i likes other persons

partner effects pj : how much person j is liked by other persons

relationship effects εij : specific effect that person i likes j
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1. Univariate and Multivariate Social Relations Model (SRM)

Univariate Social Relations Model (II)

social relations model (SRM)

yij = µ+ ai + pj + εij (1)

model parameters at level of persons (Σu) and dyads (Σr)

Σu = V ar

(
ai
pi

)
=

(
σ2a
σap σ2p

)
(2)

Σr = V ar

(
εij
εji

)
=

(
σ2ε
σεε σ2ε

)
(3)
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1. Univariate and Multivariate Social Relations Model (SRM)

Mixed Effects Representation of the SRM

social relations model (SRM)

yij = µ+ ai + pj + εij (1)

define vector of person effects for persons i = 1, . . . , I: ui = (ai, pi)

define vector of dyad effects for dyads d = 1, . . . , D: rd = (εij , εji)

collect all observations in outcome y = (yij)ij

mixed effects model representation (see Nestler, 2016)

y =Xβ +

I∑
i=1

Ziui +

D∑
d=1

Wdrd (4)

with design matrices Zi and Wd (containing only zeros or ones)

short form in mixed effects model notation: y =Xβ +Zu+Wr
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1. Univariate and Multivariate Social Relations Model (SRM)

Multivariate Social Relations Model

now consider V multiple outcomes y1ij , . . . , yV ij

multiple (i.e., 2V ) actor and partner effects define person level
variable ui

relationship vector rd can also be extended for multiple outcomes

no general change in notation for mixed effects representation

y =Xβ +

I∑
i=1

Ziui +

D∑
d=1

Wdrd (4)

in short: y =Xβ +Zu+Wr

estimation with ANOVA method (unweighted least squares) or
(restricted) maximum likelihood
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2. Structural Equation Models (SEM) for Multivariate Data

Structural Equation Models (SEM) for Multivariate Data

model multivariate normally distributed outcome as a constrained
model y ∼MVN(µ(θ),Σ(θ)) with a parameter vector θ

ignore mean structure in the following for simplicity

structural equation model (SEM)

y = Λη + ε
η = Bη + ξ

(5)

model parameter vector θ contains free parameters in Λ, B,
V ar(ξ) = Φ, V ar(ε) = Ψ

model implied covariance matrix

V ar(y) = Σy = Σy(θ) = Λ(I −B)−1Φ((I −B)−1)′Λ′ +Ψ (6)
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2. Structural Equation Models (SEM) for Multivariate Data

Maximum Likelihood Estimation in SEM

maximum likelihood (ML) estimation maximizes

l(θ) = const− 1

2
log |Σ−1y | −

1

2
(y − µy)

′Σ−1y (y − µy) (7)

gradient (score equation)

∂l

∂θh
= −1

2
tr

(
Σ−1y

∂Σy

∂θh

)
+

1

2
(y − µy)

′Σ−1y

∂Σy

∂θh
Σ−1y (y − µy) (8)

expected information matrix for use in Fisher Scoring

E

(
∂l2

∂θh∂θk

)
= −1

2
tr

(
Σ−1y

∂Σy

∂θh
Σ−1y

∂Σy

∂θk

)
(9)

update equation in Fisher scoring

θ(t+1) = θ(t) +

[
E

(
∂l2

∂θ∂θT

)]−1
∂l

∂θ
(10)
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3. Social Relations Structural Equation Model (SR-SEM)

Social Relations Structural Equation Model (SR-SEM)

multivariate SRM ⇒ covariance structure of person effects Σu and
dyad effects Σr

consider restricted models Σu = Σu(θ) and Σr = Σr(θ), e.g. models
with factor structures or relationship among several constructs ⇒
social relations structural equation model (SR-SEM)

SEM at level of persons: θu = (Λu,Bu,Φu,Ψu)

SEM at level of dyads θr = (Λr,Br,Φr,Ψr)

or pose some equality constraints among both levels (e.g., invariance
of factor loadings)
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3. Social Relations Structural Equation Model (SR-SEM)

ML Estimation in SR-SEM

stack all observations (dyads, variables) of a round robin design in
outcome vector y

y is multivariate normally distributed if all effects of the SRM are
normally distribution

ML estimation of θ needs Σy and
∂Σy

∂θh
(see normal theory based ML)

multivariate SRM has mixed effects representation

y =Xβ +

I∑
i=1

Ziui +

D∑
d=1

Wdrd (4)

⇒

Σy = V ar(y) =

I∑
i=1

ZiΣuZ
′
i +

D∑
d=1

WdΣrW
′
d (11)

∂Σy

∂θh
=

I∑
i=1

Zi
∂Σu

∂θh
Z ′i +

D∑
d=1

Wd
∂Σr

∂θh
W ′

d (12)
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4. R package srm

R Package srm

R package srm on CRAN

covers SEM at both levels (persons and dyads)

satisfactory computation time (computational shortcuts, use of Rcpp)

ML estimation using Fisher scoring and quasi-Newton approach using
observed information matrix

Fisher scoring relatively stable, at least more stable than
Quasi-Newton algorithms with observed information matrix
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4. R package srm

srm Package: Model Syntax

inspired by multilevel syntax of lavaan (level identifiers %person and
%dyad)

SRM decomposition Yij = µ+ ai + pj + εij plainly translates to
V1=V1@A+V1@P+V1@AP

Example syntax for unidimensional factor model

\%Person

f1@A=~Wert1@A+Wert2@A+Wert3@A

f1@P=~Wert1@P+Wert2@P+Wert3@P

\%Dyad

f1@AP=~Wert1@AP+Wert2@AP+Wert3@AP

# define some constraints

Wert1@AP ~~ 0*Wert1@PA

Wert3@AP ~~ 0*Wert3@PA
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4. R package srm

srm Package: Model Output

index group lhs op rhs mat fixed est se lower

1 NA 1 F1@A =~ Wert1@A LAM_U 1 1.000 NA -Inf

2 NA 1 F1@P =~ Wert1@P LAM_U 1 1.000 NA -Inf

3 1 1 F1@A ~~ F1@A PHI_U NA 0.322 0.071 -Inf

4 2 1 F1@A ~~ F1@P PHI_U NA 0.098 0.043 -Inf

5 3 1 F1@P ~~ F1@P PHI_U NA 0.160 0.049 -Inf

6 NA 1 Wert1@A ~~ Wert1@A PSI_U 0 0.000 NA -Inf

7 NA 1 Wert1@A ~~ Wert1@P PSI_U 0 0.000 NA -Inf

8 NA 1 Wert1@P ~~ Wert1@P PSI_U 0 0.000 NA -Inf

9 NA 1 F1@A ~1 F1@A MU_U 0 0.000 NA -Inf

10 NA 1 F1@P ~1 F1@P MU_U 0 0.000 NA -Inf

11 4 1 Wert1@A ~1 Wert1@A BETA NA 0.150 0.093 -Inf

12 NA 1 F1@AP =~ Wert1@AP LAM_D 1 1.000 NA -Inf

13 NA 1 F1@PA =~ Wert1@PA LAM_D 1 1.000 NA -Inf

14 6 1 F1@AP ~~ F1@AP PHI_D NA 1.531 0.081 -Inf

15 5 1 F1@AP ~~ F1@PA PHI_D NA 0.069 0.081 -Inf

16 6 1 F1@PA ~~ F1@PA PHI_D NA 1.531 0.081 -Inf

17 NA 1 Wert1@AP ~~ Wert1@AP PSI_D 0 0.000 NA -Inf

18 NA 1 Wert1@AP ~~ Wert1@PA PSI_D 0 0.000 NA -Inf

19 NA 1 Wert1@PA ~~ Wert1@PA PSI_D 0 0.000 NA -Inf
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5. Computational Aspects

Computational Aspects

matrices of derivatives ∂Σu
∂θh

and ∂Σr
∂θh

have known forms (known from
single-level SEMs)

inverse matrix Σ−1y computationally demanding because its dimension
is D(D − 1)V

total likelihood based on sum of independent likelihoods
corresponding to different round robin groups

⇒ Σ−1y must only be computed for round robin designs with same
number of persons (without missing data)
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5. Computational Aspects

Faster Computation of Σ−1y : Woodbury Identity

tip from Yves Rosseel (June 2019)

observations in the SR-SEM are of the form y = Zu+ e, where
U = V ar(u) and E = V ar(e) are block diagonal matrices of
functions of Σu and Σr, respectively

Σu and Σr computationally inexpensive to invert (because of lower
dimension), and, therefore, also block diagonal matrices U and E

it holds that
V ar(y) = Σy = ZUZT +E (13)

use Woodbury identity for inversion

(ZUZT +E)−1 = E−1 −E−1Z
(
U−1 +ZTE−1Z

)
ZTE−1 (14)
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5. Computational Aspects

Skipping Zero Entries in Matrix Computations

in computation of the first and second derivative, matrix
multiplications Σ−1y

∂Σy

∂θh
for all parameters θh have to be computed

many entries in
∂Σy

∂θh
are zero (e.g., derivative with respect to a

particular item loading)

skip these computations in matrix computations by hard coding
sparse matrix multiplications in Rcpp

⇒ skipping redundant computations led to most important speed
improvement
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6. Discussion

More Advanced Models and Extensions

multiple group models (e.g., round robin designs in different age
groups or different school tracks)

discrete moderators x (e.g., gender) of model parameters θ = θ(x)
can be handled by including pseudo variables (original variable ×
dummy variables for moderator values)

generic variables at person level (self ratings) are round robin
variables with constraints: yij = µ+ 0 · ai + 1 · pj + 0 · εij

level-specific fit indices for assessing differences between multivariate
saturated SRM and SRM-SEM
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6. Discussion

Alternative Estimators

least squares estimation (Bond & Malloy, 2018)

composite likelihood methods (pairwise likelihood estimation),
particularly attractive for high-dimensional models and categorical
data

MCMC techniques (Hoff, 2005; Gill & Swartz, 2001)

maximum a posterior (MAP) estimation using prior distributions
(penalized maximum likelihood estmation)

plausible value imputation: estimate a saturated multivariate SRM at
first, then plugin the PVs into a standard single-level SEM

two-step methods: estimation of
”
factor scores“, then plug-in factor

scores into path models (with some unreliablity correction)
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