Structural Equation Modeling for Social Relations: The R package **srm**

Alexander Robitzsch¹², Steffen Nestler³, Oliver Lüdtke¹²

¹ IPN – Leibniz Institute for Science and Mathematics Education
 ² Centre for International Student Assessment (ZIB)
 ³ University of Münster

Psychoco Dortmund, February 2020

- 1. Univariate and Multivariate Social Relations Model (SRM)
- 2. Structural Equation Models (SEM) for Multivariate Data
- 3. Social Relations Structural Equation Model (SR-SEM)
- 4. R package srm
- 5. Computational Aspects

6. Discussion

Univariate Social Relations Model (I)

- actor i rates partner j in dyad d=(ij) on one variable y, e.g., ratings on
 - I like person XX a lot.
 - I think that person XX is good at Mathematics.
- social relations model (SRM)

$$y_{ij} = \mu + a_i + p_j + \varepsilon_{ij} \tag{1}$$

- actor effects a_i : how much person i likes other persons
- partner effects p_j : how much person j is liked by other persons
- relationship effects ε_{ij} : specific effect that person i likes j

Univariate Social Relations Model (II)

social relations model (SRM)

$$y_{ij} = \mu + a_i + p_j + \varepsilon_{ij} \tag{1}$$

• model parameters at level of persons $(\mathbf{\Sigma}_u)$ and dyads $(\mathbf{\Sigma}_r)$

$$\Sigma_{u} = Var \begin{pmatrix} a_{i} \\ p_{i} \end{pmatrix} = \begin{pmatrix} \sigma_{a}^{2} \\ \sigma_{ap} & \sigma_{p}^{2} \end{pmatrix}$$
(2)
$$\Sigma_{r} = Var \begin{pmatrix} \varepsilon_{ij} \\ \varepsilon_{ji} \end{pmatrix} = \begin{pmatrix} \sigma_{\varepsilon}^{2} \\ \sigma_{\varepsilon\varepsilon} & \sigma_{\varepsilon}^{2} \end{pmatrix}$$
(3)

Mixed Effects Representation of the SRM

• social relations model (SRM)

$$y_{ij} = \mu + a_i + p_j + \varepsilon_{ij} \tag{1}$$

- define vector of person effects for persons $i = 1, \ldots, I$: $\boldsymbol{u}_i = (a_i, p_i)$
- define vector of dyad effects for dyads $d = 1, \ldots, D$: $r_d = (\varepsilon_{ij}, \varepsilon_{ji})$
- collect all observations in outcome $oldsymbol{y} = (y_{ij})_{ij}$
- mixed effects model representation (see Nestler, 2016)

$$oldsymbol{y} = oldsymbol{X}oldsymbol{eta} + \sum_{i=1}^{I}oldsymbol{Z}_{i}oldsymbol{u}_{i} + \sum_{d=1}^{D}oldsymbol{W}_{d}oldsymbol{r}_{d}$$
 (4)

with design matrices Z_i and W_d (containing only zeros or ones) • short form in mixed effects model notation: $y = X\beta + Zu + Wr$

Multivariate Social Relations Model

- now consider V multiple outcomes y_{1ij}, \ldots, y_{Vij}
- multiple (i.e., 2V) actor and partner effects define person level variable u_i
- ullet relationship vector r_d can also be extended for multiple outcomes
- no general change in notation for mixed effects representation

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \sum_{i=1}^{I} \boldsymbol{Z}_{i}\boldsymbol{u}_{i} + \sum_{d=1}^{D} \boldsymbol{W}_{d}\boldsymbol{r}_{d}$$
(4)

- ullet in short: $oldsymbol{y} = oldsymbol{X}oldsymbol{eta} + oldsymbol{Z}oldsymbol{u} + oldsymbol{W}oldsymbol{r}$
- estimation with ANOVA method (unweighted least squares) or (restricted) maximum likelihood

Structural Equation Models (SEM) for Multivariate Data

- model multivariate normally distributed outcome as a constrained model $\boldsymbol{y} \sim MVN(\boldsymbol{\mu}(\boldsymbol{\theta}), \boldsymbol{\Sigma}(\boldsymbol{\theta}))$ with a parameter vector $\boldsymbol{\theta}$
- ignore mean structure in the following for simplicity
- structural equation model (SEM)

$$egin{array}{rcl} y&=&\Lambda\eta+arepsilon\ \eta&=&B\eta+\xi \end{array}$$

- model parameter vector θ contains free parameters in Λ , B, $Var(\boldsymbol{\xi}) = \Phi$, $Var(\boldsymbol{\varepsilon}) = \Psi$
- model implied covariance matrix

$$Var(\boldsymbol{y}) = \boldsymbol{\Sigma}_{\boldsymbol{y}} = \boldsymbol{\Sigma}_{\boldsymbol{y}}(\boldsymbol{\theta}) = \boldsymbol{\Lambda}(\boldsymbol{I} - \boldsymbol{B})^{-1} \boldsymbol{\Phi}((\boldsymbol{I} - \boldsymbol{B})^{-1})' \boldsymbol{\Lambda}' + \boldsymbol{\Psi} \quad (6)$$

Maximum Likelihood Estimation in SEM

• maximum likelihood (ML) estimation maximizes

$$l(\boldsymbol{\theta}) = \text{const} - \frac{1}{2} \log |\boldsymbol{\Sigma}_{\boldsymbol{y}}^{-1}| - \frac{1}{2} (\boldsymbol{y} - \boldsymbol{\mu}_{\boldsymbol{y}})' \boldsymbol{\Sigma}_{\boldsymbol{y}}^{-1} (\boldsymbol{y} - \boldsymbol{\mu}_{\boldsymbol{y}})$$
(7)

• gradient (score equation)

$$\frac{\partial l}{\partial \theta_h} = -\frac{1}{2} \operatorname{tr} \left(\boldsymbol{\Sigma}_{\boldsymbol{y}}^{-1} \frac{\partial \boldsymbol{\Sigma}_{\boldsymbol{y}}}{\partial \theta_h} \right) + \frac{1}{2} (\boldsymbol{y} - \boldsymbol{\mu}_{\boldsymbol{y}})' \boldsymbol{\Sigma}_{\boldsymbol{y}}^{-1} \frac{\partial \boldsymbol{\Sigma}_{\boldsymbol{y}}}{\partial \theta_h} \boldsymbol{\Sigma}_{\boldsymbol{y}}^{-1} (\boldsymbol{y} - \boldsymbol{\mu}_{\boldsymbol{y}})$$
(8)

• expected information matrix for use in Fisher Scoring

$$E\left(\frac{\partial l^2}{\partial \theta_h \partial \theta_k}\right) = -\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}_{\boldsymbol{y}}^{-1} \frac{\partial \boldsymbol{\Sigma}_{\boldsymbol{y}}}{\partial \theta_h} \boldsymbol{\Sigma}_{\boldsymbol{y}}^{-1} \frac{\partial \boldsymbol{\Sigma}_{\boldsymbol{y}}}{\partial \theta_k}\right)$$
(9)

update equation in Fisher scoring

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \left[E\left(\frac{\partial l^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \right) \right]^{-1} \frac{\partial l}{\partial \boldsymbol{\theta}}$$
(10)

Social Relations Structural Equation Model (SR-SEM)

- multivariate SRM \Rightarrow covariance structure of person effects Σ_u and dyad effects Σ_r
- consider restricted models $\Sigma_u = \Sigma_u(\theta)$ and $\Sigma_r = \Sigma_r(\theta)$, e.g. models with factor structures or relationship among several constructs \Rightarrow social relations structural equation model (SR-SEM)
- ullet SEM at level of persons: ${m heta}_u = ({m \Lambda}_u, {m B}_u, {m \Phi}_u, {m \Psi}_u)$
- SEM at level of dyads $oldsymbol{ heta}_r = (oldsymbol{\Lambda}_r, oldsymbol{B}_r, oldsymbol{\Phi}_r, oldsymbol{\Psi}_r)$
- or pose some equality constraints among both levels (e.g., invariance of factor loadings)

ML Estimation in SR-SEM

- ullet stack all observations (dyads, variables) of a round robin design in outcome vector ${\pmb y}$
- \boldsymbol{y} is multivariate normally distributed if all effects of the SRM are normally distribution
- ML estimation of θ needs Σ_y and $\frac{\partial \Sigma_y}{\partial \theta_h}$ (see normal theory based ML)
- multivariate SRM has mixed effects representation

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \sum_{i=1}^{I} \boldsymbol{Z}_{i}\boldsymbol{u}_{i} + \sum_{d=1}^{D} \boldsymbol{W}_{d}\boldsymbol{r}_{d}$$
(4)

$$\boldsymbol{\Sigma}_{\boldsymbol{y}} = Var(\boldsymbol{y}) = \sum_{i=1}^{I} \boldsymbol{Z}_{i} \boldsymbol{\Sigma}_{u} \boldsymbol{Z}_{i}' + \sum_{d=1}^{D} \boldsymbol{W}_{d} \boldsymbol{\Sigma}_{r} \boldsymbol{W}_{d}'$$
(11)

$$\frac{\partial \boldsymbol{\Sigma}_{\boldsymbol{y}}}{\partial \theta_h} = \sum_{i=1}^{I} \boldsymbol{Z}_i \frac{\partial \boldsymbol{\Sigma}_u}{\partial \theta_h} \boldsymbol{Z}'_i + \sum_{d=1}^{D} \boldsymbol{W}_d \frac{\partial \boldsymbol{\Sigma}_r}{\partial \theta_h} \boldsymbol{W}'_d$$
(12)

 \Rightarrow

- R package srm on CRAN
- covers SEM at both levels (persons and dyads)
- satisfactory computation time (computational shortcuts, use of Rcpp)
- ML estimation using Fisher scoring and quasi-Newton approach using observed information matrix
- Fisher scoring relatively stable, at least more stable than Quasi-Newton algorithms with observed information matrix

4. R package srm

srm Package: Model Syntax

- inspired by multilevel syntax of lavaan (level identifiers %person and %dyad)
- SRM decomposition $Y_{ij} = \mu + a_i + p_j + \varepsilon_{ij}$ plainly translates to V1=V1@A+V1@P+V1@AP
- Example syntax for unidimensional factor model

```
\%Person
f1@A=~Wert1@A+Wert2@A+Wert3@A
f1@P=~Wert1@P+Wert2@P+Wert3@P
```

```
\%Dyad
f1@AP=~Wert1@AP+Wert2@AP+Wert3@AP
```

define some constraints
Wert1@AP ~~ O*Wert1@PA
Wert3@AP ~~ O*Wert3@PA

srm Package: Model Output

	index	group	lhs	op	rhs	mat	fixed	est	se	lower
1	NA	1	F1@A	=~	Wert1@A	LAM_U	1	1.000	NA	-Inf
2	NA	1	F1@P	=~	Wert1@P	LAM_U	1	1.000	NA	-Inf
3	1	1	F1@A	~ ~	F1@A	PHI_U	NA	0.322	0.071	-Inf
4	2	1	F1@A	~ ~	F1@P	PHI_U	NA	0.098	0.043	-Inf
5	3	1	F1@P	~ ~	F1@P	PHI_U	NA	0.160	0.049	-Inf
6	NA	1	Wert1@A	~ ~	Wert1@A	PSI_U	0	0.000	NA	-Inf
7	NA	1	Wert1@A	~ ~	Wert1@P	PSI_U	0	0.000	NA	-Inf
8	NA	1	Wert1@P	~ ~	Wert1@P	PSI_U	0	0.000	NA	-Inf
9	NA	1	F1@A	~1	F1@A	MU_U	0	0.000	NA	-Inf
10	NA	1	F1@P	~1	F1@P	MU_U	0	0.000	NA	-Inf
11	4	1	Wert1@A	~1	Wert1@A	BETA	NA	0.150	0.093	-Inf
12	NA	1	F1@AP	=~	Wert1@AP	LAM_D	1	1.000	NA	-Inf
13	NA	1	F1@PA	=~	Wert1@PA	LAM_D	1	1.000	NA	-Inf
14	6	1	F1@AP	~ ~	F1@AP	PHI_D	NA	1.531	0.081	-Inf
15	5	1	F1@AP	~ ~	F1@PA	PHI_D	NA	0.069	0.081	-Inf
16	6	1	F1@PA	~ ~	F1@PA	PHI_D	NA	1.531	0.081	-Inf
17	NA	1	Wert1@AP	~ ~	Wert1@AP	PSI_D	0	0.000	NA	-Inf
18	NA	1	Wert1@AP	~ ~	Wert1@PA	PSI_D	0	0.000	NA	-Inf
19	NA	1	Wert1@PA	~ ~	Wert1@PA	PSI_D	0	0.000	NA	-Inf

Computational Aspects

- matrices of derivatives $\frac{\partial \Sigma_u}{\partial \theta_h}$ and $\frac{\partial \Sigma_r}{\partial \theta_h}$ have known forms (known from single-level SEMs)
- inverse matrix $\pmb{\Sigma_y^{-1}}$ computationally demanding because its dimension is D(D-1)V
- total likelihood based on sum of independent likelihoods corresponding to different round robin groups
- $\Rightarrow \Sigma_y^{-1}$ must only be computed for round robin designs with same number of persons (without missing data)

Faster Computation of Σ_{u}^{-1} : Woodbury Identity

- tip from Yves Rosseel (June 2019)
- observations in the SR-SEM are of the form y = Zu + e, where U = Var(u) and E = Var(e) are block diagonal matrices of functions of Σ_u and Σ_r , respectively
- Σ_u and Σ_r computationally inexpensive to invert (because of lower dimension), and, therefore, also block diagonal matrices U and E
- it holds that

$$Var(\boldsymbol{y}) = \boldsymbol{\Sigma}_{\boldsymbol{y}} = \boldsymbol{Z}\boldsymbol{U}\boldsymbol{Z}^T + \boldsymbol{E}$$
(13)

• use Woodbury identity for inversion

$$(\mathbf{Z}\mathbf{U}\mathbf{Z}^{T}+\mathbf{E})^{-1} = \mathbf{E}^{-1} - \mathbf{E}^{-1}\mathbf{Z}\left(\mathbf{U}^{-1} + \mathbf{Z}^{T}\mathbf{E}^{-1}\mathbf{Z}\right)\mathbf{Z}^{T}\mathbf{E}^{-1}$$
 (14)

Skipping Zero Entries in Matrix Computations

- in computation of the first and second derivative, matrix multiplications $\Sigma_y^{-1} \frac{\partial \Sigma_y}{\partial \theta_h}$ for all parameters θ_h have to be computed
- many entries in $\frac{\partial \Sigma_y}{\partial \theta_h}$ are zero (e.g., derivative with respect to a particular item loading)
- skip these computations in matrix computations by *hard coding sparse matrix multiplications* in **Rcpp**
- $\Rightarrow\,$ skipping redundant computations led to most important speed improvement

6. Discussion

More Advanced Models and Extensions

- multiple group models (e.g., round robin designs in different age groups or different school tracks)
- discrete moderators x (e.g., gender) of model parameters $\theta = \theta(x)$ can be handled by including pseudo variables (original variable \times dummy variables for moderator values)
- generic variables at person level (self ratings) are round robin variables with constraints: $y_{ij} = \mu + 0 \cdot a_i + 1 \cdot p_j + 0 \cdot \varepsilon_{ij}$
- level-specific fit indices for assessing differences between multivariate saturated SRM and SRM-SEM

Alternative Estimators

- least squares estimation (Bond & Malloy, 2018)
- composite likelihood methods (pairwise likelihood estimation), particularly attractive for high-dimensional models and categorical data
- MCMC techniques (Hoff, 2005; Gill & Swartz, 2001)
- maximum a posterior (MAP) estimation using prior distributions (penalized maximum likelihood estmation)
- plausible value imputation: estimate a saturated multivariate SRM at first, then plugin the PVs into a standard single-level SEM
- two-step methods: estimation of "factor scores", then plug-in factor scores into path models (with some unreliablity correction)

Many thanks!

Alexander Robitzsch robitzsch@ipn.uni-kiel.de