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optimization

• for many (psychometric) models, parameter estimation involves an iterative
optimization algorithm

– Newton-Raphson, Fisher scoring
– quasi-Newton (eg., BFGS)
– Expectation Maximization
– . . .

• in R, quasi-Newton optimization can be done with the functions nlm(),
optim(), or nlminb()

• without care, optimization may fail (no solution is found)

• I will discuss three tricks that may help:

1. handling linear equality constraints
2. parameter scaling
3. parameter bounds
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linear equality constraints: example
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• (weak) invariance model: equal factor loadings across groups
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linear equality constraints in optimization

• consider the minimization of a nonlinear function subject to a set of linear
equality constraints:

min f(x) subject to Ax = b

• when the equality constraints are linear, you can use an ‘elimination of vari-
ables’ trick, ending up with an unconstrained optimization problem

• see section 15.3 of

Nocedal, J. and Wright, S. (2006). Numerical Optimization (2nd
edition). New York, NY: Springer

• the idea is to ‘project’ the full parameter vector (x) to a reduced parameter
vector (x?), and send this reduced parameter vector to the optimizer

• every time we need to evaluate the objective function, we need to ‘unpack’
x? to form x

• see lav model estimate.R in the lavaan package for example code

Yves Rosseel Improving The Success Rate Of Optimization Algorithms In Psychometric Software 4 / 19



Department of Data Analysis Ghent University

parameter scaling

• consider the standard (unconstrained) minimization problem

min f(x)

where x = {x1, x2, . . . , xr, . . . , xR}

• in a ‘well-scaled’ optimization problem, the following rule holds:

“a one unit change in xr results in a one unit change for f(x)”

• if this is not the case, you should rescale the model parameters until this
‘rule’ holds approximately

– it may take some experimentation to find good scaling factors that work
well in general (for your specific model)

• the nlminb() function has a scale= argument, where you provide a vec-
tor of scaling factors for each parameter
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if the sample size is (very) small: parameter bounds may help

• consider the following SEM:

y1 y2 y3 x1 x2 x3

Y X
β

• this is a small model, with only 13 free parameters:

– the factor loadings are set to 1, 0.8 and 0.6

– the regression coefficient is set to β = 0.25

– all (residual) variances are set to 1.0

• from this population model, we will generate a small sample (N = 20)
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data generation (N = 20)
> library(lavaan)
> pop.model <- '
+ # factor loadings
+ Y =˜ 1*y1 + 0.8*y2 + 0.6*y3
+ X =˜ 1*x1 + 0.8*x2 + 0.6*x3
+
+ # regression part
+ Y ˜ 0.25*X
+ '
> set.seed(8)
> Data <- simulateData(pop.model, sample.nobs = 20L)

fitting the model using ML
> model <- '
+ # factor loadings
+ Y =˜ y1 + y2 + y3
+ X =˜ x1 + x2 + x3
+
+ # regression part
+ Y ˜ X
+ '
> fit.sem <- sem(model, data = Data, estimator = "ML")

lavaan WARNING: the optimizer warns that a solution has NOT been found!
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output SEM
Latent Variables:

Estimate Std.Err z-value P(>|z|)
Y =˜
y1 1.000
y2 1.683 NA
y3 1.051 NA

X =˜
x1 1.000
x2 302.417 NA
x3 0.428 NA

Regressions:
Estimate Std.Err z-value P(>|z|)

Y ˜
X -0.159 NA

Variances:
Estimate Std.Err z-value P(>|z|)

.y1 1.706 NA

.y2 0.763 NA

.y3 1.066 NA

.x1 1.408 NA

.x2 -415.125 NA

.x3 1.552 NA

.Y 0.450 NA
X 0.005 NA
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R = 1000 replications: percentage of converged solutions

sample size percentage converged
10 51.3%
15 63.0%
20 73.4%
25 78.6%
30 82.4%
40 91.7%
50 93.9%
60 97.1%
70 99.0%
80 99.1%
90 99.5%

100 99.7%
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ML estimation + bounds

• given the data, we can determine ‘theoretical’ lower and upper bounds for
the model parameters

• some notation:

– s2p is the observed sample variance of the p-th observed indicator

– in scalar notation, we can write the (one-factor) measurement model as

yp = λp f + εp

– we assume Cov(f, εp) = 0 and write Var(εp) = θp and Var(f) = ψ,
and therefore

Var(yp) = s2p = λ2p ψ + θp

• we need bounds for the factor loadings (λp), the residual variances (θp),
covariances and (optionally) regression coefficients
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a few examples of lower/upper bounds

• we fix the metric of the factor f by fixing the first factor loading to 1

• the upper positive bound for λp is given by

λ(u)p =

√
s2p
ψ(l)

where ψ(l) is the lower bound for the variance of the factor

• the lower bound for the factor variance can be expressed as:

ψ(l) = s21 − [1− REL(y1)]s21

where REL(y1) is the (unknown) minimum reliability of the first (marker)
indicator y1

• we will often assume that REL(y1) ≥ 0.1
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a few examples of lower/upper bounds (2)

• residual variance θp

– the lower bound for θp is zero

– the upper bound for θp is s2p
– more stricter bounds can be derived (see the EFA literature)

• a correlation (in absolute value) can not exceed 1.0; therefore

1 ≥

∣∣∣∣∣ Cov(θp, θq)√
Var(θp)

√
Var(θq)

∣∣∣∣∣√
Var(θp)

√
Var(θq) ≥ |Cov(θp, θq)|

• we will not impose bounds on the regression coefficient β
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increasing/decreasing the bounds

• suppose the lower/upper bounds for a parameter θ are (0, 10)

• we can increase the upper bound with, say, 10%: (0, 11)

• similarly, we can decrease the lower bound with 10%: (-1,11)

• we have set up a simulation study to find ‘optimal’ bounds by using varying
factors to increase/decrease the bounds (joint work with my PhD student
Julie De Jonckere)

• currently, the ‘best’ choice seems to be:

– minimum reliability first indicator: 0.1 (or higher)

– increase/decrease bounds of observed variances with a factor 1.2

– increase/decrease bounds of factor loadings with a factor 1.1

– increase upper bounds of latent variances with a factor 1.3

• what happens to the percentage of converged solutions?
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R = 1000 replications: percentage of converged solutions (with bounds)

sample size percentage converged
10 100%
15 100%
20 100%
25 100%
30 100%
40 100%
50 100%
60 100%
70 100%
80 100%
90 100%

100 100%
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using these bounds with lavaan dev 0.6-6
> fit.semb <- sem(model, data = Data, estimator = "ML", bounds = TRUE)
> parTable(fit.semb)[,c(2,3,4,8,13,14,16)]

lhs op rhs free lower upper est
1 Y =˜ y1 0 1.000 1.000 1.000
2 Y =˜ y2 1 -3.689 3.689 1.392
3 Y =˜ y3 2 -3.231 3.231 0.977
4 X =˜ x1 0 1.000 1.000 1.000
5 X =˜ x2 3 -4.907 4.907 2.023
6 X =˜ x3 4 -3.978 3.978 0.558
7 Y ˜ X 5 -Inf Inf -0.104
8 y1 ˜˜ y1 6 -0.431 2.588 1.597
9 y2 ˜˜ y2 7 -0.407 2.445 0.953
10 y3 ˜˜ y3 8 -0.313 1.875 1.029
11 x1 ˜˜ x1 9 -0.283 1.695 0.715
12 x2 ˜˜ x2 10 -0.472 2.834 -0.472
13 x3 ˜˜ x3 11 -0.310 1.863 1.335
14 Y ˜˜ Y 12 0.000 2.803 0.552
15 X ˜˜ X 13 0.141 1.837 0.698
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output SEM with bounds
Latent Variables:

Estimate Std.Err z-value P(>|z|)
Y =˜
y1 1.000
y2 1.392 1.013 1.374 0.170
y3 0.977 0.652 1.498 0.134

X =˜
x1 1.000
x2 2.023 1.088 1.860 0.063
x3 0.558 0.305 1.830 0.067

Regressions:
Estimate Std.Err z-value P(>|z|)

Y ˜
X -0.104 0.226 -0.461 0.644

Variances:
Estimate Std.Err z-value P(>|z|)

.y1 1.597 0.635 2.515 0.012

.y2 0.953 0.795 1.198 0.231

.y3 1.029 0.488 2.106 0.035

.x1 0.715 0.408 1.750 0.080

.x2 (lb) -0.472 1.401 -0.337

.x3 1.335 0.435 3.072 0.002

.Y 0.552 0.590 0.935 0.350
X 0.698 0.514 1.358 0.175
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last slide

• we discussed three tricks to increase the success rate of optimization

1. eliminating parameters (linear equality constraints)

2. scaling parameters

3. parameter bounds

• caveat: 1) and 3) do not mix!

• we are currently investigating the use of parameter bounds for multilevel
SEMs when the number of clusters is rather small

• my examples were taken from the SEM domain, but the tricks apply to all
(psychometric) models that require optimization
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Thank you!

(questions?)

http://lavaan.org
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