Improving The Success Rate Of Optimization Algorithms In Psychometric Software

Yves Rosseel Department of Data Analysis Ghent University – Belgium

February 28, 2020 Psychoco – TU Dortmund University

optimization

- for many (psychometric) models, parameter estimation involves an iterative optimization algorithm
 - Newton-Raphson, Fisher scoring
 - quasi-Newton (eg., BFGS)
 - Expectation Maximization
 - ...
- in R, quasi-Newton optimization can be done with the functions nlm(), optim(), or nlminb()
- without care, optimization may fail (no solution is found)
- I will discuss three tricks that may help:
 - 1. handling linear equality constraints
 - 2. parameter scaling
 - 3. parameter bounds

linear equality constraints: example

• (weak) invariance model: equal factor loadings across groups

linear equality constraints in optimization

• consider the minimization of a nonlinear function subject to a set of linear equality constraints:

 $\min f(\mathbf{x})$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

- when the equality constraints are linear, you can use an 'elimination of variables' trick, ending up with an unconstrained optimization problem
- see section 15.3 of

Nocedal, J. and Wright, S. (2006). *Numerical Optimization (2nd edition)*. New York, NY: Springer

- the idea is to 'project' the full parameter vector (x) to a reduced parameter vector (x*), and send this reduced parameter vector to the optimizer
- every time we need to evaluate the objective function, we need to 'unpack' \mathbf{x}^{\star} to form \mathbf{x}
- see lav_model_estimate.R in the lavaan package for example code

parameter scaling

• consider the standard (unconstrained) minimization problem

$\min f(\mathbf{x})$

where $\mathbf{x} = \{x_1, x_2, ..., x_r, ..., x_R\}$

• in a 'well-scaled' optimization problem, the following rule holds:

"a one unit change in x_r results in a one unit change for $f(\mathbf{x})$ "

- if this is not the case, you should rescale the model parameters until this 'rule' holds approximately
 - it may take some experimentation to find good scaling factors that work well in general (for your specific model)
- the nlminb() function has a scale = argument, where you provide a vector of scaling factors for each parameter

if the sample size is (very) small: parameter bounds may help

• consider the following SEM:

- this is a small model, with only 13 free parameters:
 - the factor loadings are set to 1, 0.8 and 0.6
 - the regression coefficient is set to $\beta=0.25$
 - all (residual) variances are set to 1.0
- from this population model, we will generate a small sample (N = 20)

data generation (N = 20)

```
> library(lavaan)
> pop.model <- '</pre>
      # factor loadings
+
      Y = 1 + y1 + 0.8 + y2 + 0.6 + y3
+
+
      X = 1 + x1 + 0.8 + x2 + 0.6 + x3
+
       # regression part
+
      Y~0.25+X
+
 .
+
> set.seed(8)
> Data <- simulateData(pop.model, sample.nobs = 20L)</pre>
```

fitting the model using ML

```
> model <- '
+  # factor loadings
+  Y =~ y1 + y2 + y3
+  X =~ x1 + x2 + x3
+
+  # regression part
+  Y ~ X
+ '
> fit.sem <- sem(model, data = Data, estimator = "ML")
lavaan WARNING: the optimizer warns that a solution has NOT been found!</pre>
```

output SEM

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)
Y =~				
y1	1.000			
y2	1.683	NA		
y3	1.051	NA		
x =~				
x 1	1.000			
x 2	302.417	NA		
x 3	0.428	NA		
Regressions:				
-	Estimate	Std.Err	z-value	P(> z)
Υ~				
x	-0.159	NA		
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.y1	1.706	NA		
. y2	0.763	NA		
.y3	1.066	NA		
.x1	1.408	NA		
. x2	-415.125	NA		
. x 3	1.552	NA		
. Y	0.450	NA		
х	0.005	NA		

R = 1000 replications: percentage of converged solutions

sample size	percentage converged
10	51.3%
15	63.0%
20	73.4%
25	78.6%
30	82.4%
40	91.7%
50	93.9%
60	97.1%
70	99.0%
80	99.1%
90	99.5%
100	99.7%

ML estimation + bounds

- given the data, we can determine 'theoretical' lower and upper bounds for the model parameters
- some notation:
 - s_p^2 is the observed sample variance of the *p*-th observed indicator
 - in scalar notation, we can write the (one-factor) measurement model as

$$y_p = \lambda_p f + \epsilon_p$$

– we assume ${\rm Cov}(f,\epsilon_p)=0$ and write ${\rm Var}(\epsilon_p)=\theta_p$ and ${\rm Var}(f)=\psi,$ and therefore

$$\operatorname{Var}(y_p) = s_p^2 = \lambda_p^2 \, \psi + \theta_p$$

• we need bounds for the factor loadings (λ_p) , the residual variances (θ_p) , covariances and (optionally) regression coefficients

a few examples of lower/upper bounds

- we fix the metric of the factor f by fixing the first factor loading to 1
- the upper positive bound for λ_p is given by

$$\lambda_p^{(u)} = \sqrt{\frac{s_p^2}{\psi^{(l)}}}$$

where $\psi^{(l)}$ is the lower bound for the variance of the factor

• the lower bound for the factor variance can be expressed as:

$$\psi^{(l)} = s_1^2 - [1 - \operatorname{REL}(y_1)]s_1^2$$

where $\text{REL}(y_1)$ is the (unknown) minimum reliability of the first (marker) indicator y_1

• we will often assume that $\text{REL}(y_1) \ge 0.1$

a few examples of lower/upper bounds (2)

- residual variance θ_p
 - the lower bound for θ_p is zero
 - the upper bound for θ_p is s_p^2
 - more stricter bounds can be derived (see the EFA literature)
- a correlation (in absolute value) can not exceed 1.0; therefore

$$1 \geq \left| \frac{\operatorname{Cov}(\theta_p, \theta_q)}{\sqrt{\operatorname{Var}(\theta_p)}\sqrt{\operatorname{Var}(\theta_q)}} \right|$$
$$\sqrt{\operatorname{Var}(\theta_p)}\sqrt{\operatorname{Var}(\theta_q)} \geq |\operatorname{Cov}(\theta_p, \theta_q)|$$

- we will not impose bounds on the regression coefficient β

increasing/decreasing the bounds

- suppose the lower/upper bounds for a parameter θ are (0, 10)
- we can increase the upper bound with, say, 10%: (0, 11)
- similarly, we can decrease the lower bound with 10%: (-1,11)
- we have set up a simulation study to find 'optimal' bounds by using varying factors to increase/decrease the bounds (joint work with my PhD student Julie De Jonckere)
- currently, the 'best' choice seems to be:
 - minimum reliability first indicator: 0.1 (or higher)
 - increase/decrease bounds of observed variances with a factor 1.2
 - increase/decrease bounds of factor loadings with a factor 1.1
 - increase upper bounds of latent variances with a factor 1.3
- what happens to the percentage of converged solutions?

R = 1000 replications: percentage of converged solutions (with bounds)

sample size	percentage converged
10	100%
15	100%
20	100%
25	100%
30	100%
40	100%
50	100%
60	100%
70	100%
80	100%
90	100%
100	100%

using these bounds with lavaan dev 0.6-6

```
> fit.semb <- sem(model, data = Data, estimator = "ML", bounds = TRUE)
> parTable(fit.semb)[,c(2,3,4,8,13,14,16)]
```

	lhs	op	rhs	free	lower	upper	est
1	Y	=~	y1	0	1.000	1.000	1.000
2	Y	=~	y2	1	-3.689	3.689	1.392
3	Y	=~	y3	2	-3.231	3.231	0.977
4	х	=~	x1	0	1.000	1.000	1.000
5	х	=~	x 2	3	-4.907	4.907	2.023
6	х	=~	х3	4	-3.978	3.978	0.558
7	Y	~	х	5	-Inf	Inf	-0.104
8	y1	~ ~	y1	6	-0.431	2.588	1.597
9	y2	~ ~	y2	7	-0.407	2.445	0.953
10	у3	~ ~	у3	8	-0.313	1.875	1.029
11	x1	~ ~	x1	9	-0.283	1.695	0.715
12	x 2	~ ~	x 2	10	-0.472	2.834	-0.472
13	x 3	~ ~	x 3	11	-0.310	1.863	1.335
14	Y	~ ~	Y	12	0.000	2.803	0.552
15	х	~ ~	х	13	0.141	1.837	0.698

output SEM with bounds

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)
¥ =~					
y1		1.000			
y2		1.392	1.013	1.374	0.170
у3		0.977	0.652	1.498	0.134
x =~					
x 1		1.000			
x 2		2.023	1.088	1.860	0.063
x 3		0.558	0.305	1.830	0.067
Regressions:					
		Estimate	Std.Err	z-value	P(> z)
¥ ~					
х		-0.104	0.226	-0.461	0.644
Variances:					
		Estimate	Std.Err	z-value	P(> z)
.y1		1.597	0.635	2.515	0.012
.y2		0.953	0.795	1.198	0.231
.y3		1.029	0.488	2.106	0.035
.x1		0.715	0.408	1.750	0.080
.x2	(lb)	-0.472	1.401	-0.337	
.x3		1.335	0.435	3.072	0.002
.Y		0.552	0.590	0.935	0.350
х		0.698	0.514	1.358	0.175

Bias for beta

sample size

last slide

- we discussed three tricks to increase the success rate of optimization
 - 1. eliminating parameters (linear equality constraints)
 - 2. scaling parameters
 - 3. parameter bounds
- caveat: 1) and 3) do not mix!
- we are currently investigating the use of parameter bounds for multilevel SEMs when the number of clusters is rather small
- my examples were taken from the SEM domain, but the tricks apply to all (psychometric) models that require optimization

Thank you!

(questions?)

http://lavaan.org