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Introduction

Interest in alternative methods for adaptive testing

I Need for short self-report based assessments in
health settings.

I Assessment often aimed at classification or
prediction.

I Such tests require specific construction approaches
(Smits et al., 2018; Oosterveld et al., 2019).

I Unfortunately, the standard approach under Item
Response Theory is inappropriate.
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Adaptive testing

Item Bank

Select and Administer item

Update test score

Enough info for test goal?

Stop

No

Yes

1
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Introduction

Existing methods for classification and prediction

I Curtailment (a.k.a. ‘Countdown’, Butcher et al., 1985).
I Stochastic Curtailment (Finkelman et al., 2012, 2013;

Fokkema et al., 2014; Smits & Finkelman, 2015).
I But:

I Early stopping, i.e., no dynamic item selection.
I Focus on (cumulative) sum scores.
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Requirements for classification and prediction

Method should:

I Provide sound approximation of cross tabulation of
items.

I Allow for predicting a criterion.
I Allow for dynamic item selection.

Would a rule learning algorithm like apriori be useful?
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I What symptoms frequently co-occur?



apriori for computerized adaptive assessment

The engine: apriori

Rule Learning

I Association rules.
I Market Basket Analysis
I What items are frequently bought together?
I What symptoms frequently co-occur?



apriori for computerized adaptive assessment

The engine: apriori

Rule Learning

I Association rules.
I Market Basket Analysis
I What items are frequently bought together?
I What symptoms frequently co-occur?



apriori for computerized adaptive assessment

The engine: apriori

Rule Learning

I Association rules.
I Market Basket Analysis
I What items are frequently bought together?
I What symptoms frequently co-occur?



apriori for computerized adaptive assessment

The engine: apriori

The Apriori Algorithm

Building blocks:

frequent set: K = A ∪ B.

rule: A⇒ B.

support: T (A⇒ B).

confidence: C(A⇒ B) =
T (A⇒ B)

T (A)
.

lift: L(A⇒ B) =
C(A⇒ B)

T (B)
.

(A=antecedent, B=consequent.)



apriori for computerized adaptive assessment

The engine: apriori

The Apriori Algorithm

Building blocks:

frequent set: K = A ∪ B.

rule: A⇒ B.

support: T (A⇒ B).

confidence: C(A⇒ B) =
T (A⇒ B)

T (A)
.

lift: L(A⇒ B) =
C(A⇒ B)

T (B)
.

(A=antecedent, B=consequent.)



apriori for computerized adaptive assessment

The engine: apriori

The Apriori Algorithm

Building blocks:

frequent set: K = A ∪ B.

rule: A⇒ B.

support: T (A⇒ B).

confidence: C(A⇒ B) =
T (A⇒ B)

T (A)
.

lift: L(A⇒ B) =
C(A⇒ B)

T (B)
.

(A=antecedent, B=consequent.)



apriori for computerized adaptive assessment

The engine: apriori

The Apriori Algorithm

Building blocks:

frequent set: K = A ∪ B.

rule: A⇒ B.

support: T (A⇒ B).

confidence: C(A⇒ B) =
T (A⇒ B)

T (A)
.

lift: L(A⇒ B) =
C(A⇒ B)

T (B)
.

(A=antecedent, B=consequent.)



apriori for computerized adaptive assessment

The engine: apriori

The Apriori Algorithm

Building blocks:

frequent set: K = A ∪ B.

rule: A⇒ B.

support: T (A⇒ B).

confidence: C(A⇒ B) =
T (A⇒ B)

T (A)
.

lift: L(A⇒ B) =
C(A⇒ B)

T (B)
.

(A=antecedent, B=consequent.)



apriori for computerized adaptive assessment

The engine: apriori

The Apriori Algorithm

Example:

K = {sleeping, eating, concentration}.
{sleeping, eating} ⇒ {concentration}.
T ({sleeping, eating}) = 0.05.
T ({concentration}) = 0.15.
T ({sleeping, eating} ⇒ {concentration}) = 0.03.
C({sleeping, eating} ⇒ {concentration}) = 0.60.
L({sleeping, eating} ⇒ {concentration}) = 4.00.
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Designing the vehicle

Building blocks

Requirements:
I Rule data base.
I Item selection.
I Test score.
I Stopping rule.
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Designing the vehicle

Rule data base

I Standard analysis focuses on presence of items.
I For health assessment absence of symptoms also

important.
I In calibration, both presence and absence included

(‘doubling’).
I Unsupervised algorithm as supervised (Fürnkranz et al.,

2012).
I Note that all variables are binary.
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Designing the vehicle

Item selection

I What item is most informative for criterion?
I Several statistics may be used:

I Correlation (φ).
I Odds-ratio.
I Entropy.
I .

I Each requires 2× 2 table.
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Designing the vehicle

Required 2× 2 table

Diagnosis

Xj = 0, xi1 , . . . , xik−1

Xj = 1, xi1 , . . . , xik−1

Y = 0 Y = 1

π00

π10

π01

π11

1 − P P

1 − Q

Q
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Designing the vehicle

Cell probabilities obtainable from statistics

lhs rhs support confidence lift count
{Back_R_Ankle} => {crit0} 0.4478873 0.5530435 0.9647687 318
{Back_L_Knee} => {crit0} 0.4309859 0.5303293 0.9251445 306
{Back_L_Wrist} => {crit0} 0.4126761 0.5077990 0.8858409 293
{Back_R_Knee} => {crit0} 0.4408451 0.5378007 0.9381781 313
{Back_L_Ankle} => {crit0} 0.4492958 0.5452991 0.9512590 319
{Back_R_Wrist} => {crit0} 0.4239437 0.5136519 0.8960512 301
{Back_L_Hip} => {crit0} 0.4380282 0.5262267 0.9179877 311
{Back_R_Hip} => {crit0} 0.4492958 0.5370370 0.9368459 319
{Front_L_Elbow} => {crit0} 0.4605634 0.5351882 0.9336207 327
{Front_R_Elbow} => {crit0} 0.4633803 0.5384615 0.9393309 329
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Designing the vehicle

Test score and stopping rule

Estimate of criterion probability after k items:
I P(Y = 1|xi1 , . . . , xik ).
I P(Y = 0) = 1− P(Y = 1).

Stopping rule:
I Set required certainty γ (e.g. 0.95).
I Stop if P(Y = 1) > γ or if P(Y = 1) < 1− γ.
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Designing the vehicle

Pseudo-code for training phase

1: Data.0← Combine item set and criterion = 0 into data base
Req.0← Set requirements for rule quality in Data.0
Results.0← Run apriori on Data.0 using Req.0
Rules.0← Rules from Results.0 with criterion = 0 as consequent

2: Data.1← Combine item set and criterion = 1 into data base
Req.1← Set requirements for rule quality in Data.1
Results.1← Run apriori on Data.1 using Req.1
Rules.1← Rules from Results.1 with criterion = 1 as consequent

3: Rules← Join Rules.0 and Rules.1
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Designing the vehicle

Pseudo-code for application phase

Require: Rules
Require: γ

1: PPV← 0
2: NPV← 0
3: Items.left← item set
4: Items.used← empty
5: while PPV< γ and NPV> 1− γ and cardinality of items.left > 0 do
6: Pattern← response pattern to Items.used
7: Rules.s← rules with Pattern as sub pattern and cardinality + 1
8: if Rules.s is not empty then
9: Select item with highest statistic.

10: else if Rules.s is empty then
11: Select item randomly
12: end if
13: Administer item
14: Remove item from Items.left
15: Add item to Items.used
16: PPV← P(Y = 1) given response pattern
17: NPV← P(Y = 0) given response pattern
18: end while

19: Output: PPV, NPV, Items.used, Pattern.
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Designing the vehicle

Synthetic data
Prediction of criterion score using 17 symptoms
$prob.pos $‘in.basket‘

[,1] "n.MSA_Q_08" "MSA_Q_01" "MSA_Q_02"
[1,] 0.07939914 "MSA_Q_15" "MSA_Q_16" "MSA_Q_06"
[2,] 0.08928571 "MSA_Q_03" "MSA_Q_04" "n.MSA_Q_05"
[3,] 0.08406114 "MSA_Q_07" "MSA_Q_09" "MSA_Q_10"
[4,] 0.12000000 "MSA_Q_11" "n.MSA_Q_12" "n.MSA_Q_13"
[5,] 0.14285714 "MSA_Q_14" "n.MSA_Q_17"
[6,] 0.13333333
[7,] NaN
[8,] NaN
[9,] NaN
[10,] NaN
[11,] NaN
[12,] NaN
[13,] NaN
[14,] NaN
[15,] NaN
[16,] NaN
[17,] NaN
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Discussion

What did I learn?

I apriori may have interesting features for adaptive
testing.

I But: What to do with infrequent response patterns?
I But: Didn’t I just program a classification tree?
I Perhaps focus on unsupervised part:

I Look for many absents or presents of symptoms.
I Combine with Stochastic Curtailment.

I I have to re-evaluate.
I Do you have suggestions?
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Thanks!

Thanks for your attention!

n.smits@uva.nl
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