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Interest in alternative methods for adaptive testing

» Need for short self-report based assessments in
health settings.

» Assessment often aimed at classification or
prediction.

» Such tests require specific construction approaches
(Smits et al., 2018; Oosterveld et al., 2019).

» Unfortunately, the standard approach under ltem
Response Theory is inappropriate.
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Adaptive testing

| Select and Administer item |
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No | Update test score|
\{ Enough info for test goal? |
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Existing methods for classification and prediction

» Curtailment (a.k.a. ‘Countdown’, Butcher et al., 1985).

» Stochastic Curtailment (Finkelman et al., 2012, 2013;
Fokkema et al., 2014; Smits & Finkelman, 2015).

> But:

» Early stopping, i.e., no dynamic item selection.
» Focus on (cumulative) sum scores.
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Requirements for classification and prediction

Method should:

» Provide sound approximation of cross tabulation of
items.

» Allow for predicting a criterion.

» Allow for dynamic item selection.

Would a rule learning algorithm like apriori be useful?
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Rule Learning

» Association rules.

> Market Basket Analysis

» What items are frequently bought together?
» What symptoms frequently co-occur?
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The Apriori Algorithm

Building blocks:

frequent set: K = AU B.
rule: A= B.
support: T(A= B).

, _ _ T(A=B)
confidence: C(A = B) = “TA)
C(A= B)

ift: L(A = B) = =7 57

(A=antecedent, B=consequent.)
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The Apriori Algorithm

Example:

K = {sleeping, eating, concentration}.
{sleeping, eating} = {concentration}.
T({sleeping, eating})=0.05.
T({concentration}) =0.15.

T({sleeping, eating} = {concentration})=0.03.
C({sleeping, eating} = {concentration})= 0.60.
L({sleeping, eating} = {concentration}) = 4.00.
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Building blocks

Requirements:
» Rule data base.
> ltem selection.
» Test score.
» Stopping rule.
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L Designing the vehicle

Rule data base

» Standard analysis focuses on presence of items.

» For health assessment absence of symptoms also
important.

> |n calibration, both presence and absence included
(‘doubling’).

» Unsupervised algorithm as supervised (Flrnkranz et al.,
2012).

» Note that all variables are binary.
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ltem selection

» What item is most informative for criterion?
» Several statistics may be used:

> Correlation (¢).

» Odds-ratio.

> Entropy.
> .

» Each requires 2 x 2 table.
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Required 2 x 2 table

Diagnosis
Y=0 Y =1
Xi=0,%,...,% 700 01 1-q
Xi =1, X, 0 T
1-P
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Cell probabilities obtainable from statistics

lhs rhs support confidence 1lift count
{Back_R_Ankle} => {crit0} 0.4478873 0.5530435 0.9647687 318
{Back_L_Knee} => {crit0} 0.4309859 0.5303293 0.9251445 306
{Back_L_Wrist} => {crit0} 0.4126761 0.5077990 0.8858409 293
{Back_R_Knee} => {crit0} 0.4408451 0.5378007 0.9381781 313
{Back_L_Ankle} => {crit0} 0.4492958 0.5452991 0.9512590 319
{Back_R_Wrist} => {crit0} 0.4239437 0.5136519 0.8960512 301
{Back_L_Hip} => {crit0} 0.4380282 0.5262267 0.9179877 311
{Back_R_Hip} => {crit0} 0.4492958 0.5370370 0.9368459 319
{Front_L_Elbow} => {crit0} 0.4605634 0.5351882 0.9336207 327
{Front_R_Elbow} => {crit0} 0.4633803 0.5384615 0.9393309 329
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Test score and stopping rule

Estimate of criterion probability after k items
> P(Y = 1|X,‘1,. . ,X,'k).

» P(Y=0)=1—-P(Y =1).
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Test score and stopping rule

Estimate of criterion probability after k items:
> P(Y =1|x;,...,X)-
» P(Y=0)=1-P(Y =1).
Stopping rule:
» Set required certainty v (e.g. 0.95).
> Stopif P(Y=1)>~orif P(Y=1)<1—1~.
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Pseudo-code for training phase

1: Data.0 + Combine item set and criterion = 0 into data base

Req.0 « Set requirements for rule quality in Data.0

Results.0 «+ Run apriori on Data.0 using Req.0

Rules.0 < Rules from Results.0 with criterion = 0 as consequent
2: Data.1 «+ Combine item set and criterion = 1 into data base

Req.1 « Set requirements for rule quality in Data.1

Results.1 + Run apriori on Data.1 using Req.1

Rules.1 < Rules from Results.1 with criterion = 1 as consequent
3: Rules « Join Rules.0 and Rules.1
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Pseudo-code for application phase

Require: Rules

Require: ~

1: PPV« 0
2: NPV« 0
3: ltems.left < item set
4: ltems.used +— empty
5: while PPV< v and NPV> 1 — ~ and cardinality of items.left > 0 do
6: Pattern +— response pattern to ltems.used
7: Rules.s «+— rules with Pattern as sub pattern and cardinality + 1
8: if Rules.s is not empty then
9: Select item with highest statistic.

10: else if Rules.s is empty then

11: Select item randomly

12: end if

13: Administer item

14: Remove item from ltems.left

15: Add item to ltems.used

16: PPV «— P(Y = 1) given response pattern
17: NPV «— P(Y = 0) given response pattern
18: end while

19: Output: PPV, NPV, ltems.used, Pattern.
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Synthetic data

Prediction of criterion score using 17 symptoms

Sprob.pos $'in.basket®
[,1] "n.MSA_Q_08" "MSA_Q_O1" "MSA_Q_02"

[1,] 0.07939914 "MSA_Q_ 15" "MSA_Q_ 16" "MSA_Q_06"
[2,] 0.08928571 "MSA_Q_03" "MSA_Q_04" "n.MSA_Q_ 05"
[3,] 0.08406114 "MSA_Q_07" "MSA_Q_09" "MSA_Q_ 10"
[4,] 0.12000000 "MSA_Q_ 11" "n.MSA_Q_ 12" "n.MSA_Q_13"
[5,]1 0.14285714 "MSA_Q_14" "n.MSA_Q_ 17"
[6,] 0.13333333
[7,1 NaN
[8,] NaN
[9,1 NaN

[10,] NaN

[11,] NaN

[12,] NaN

[13,] NaN

[14,] NaN

[15,] NaN

[16,1] NaN

(17,1 NaN
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What did | learn?

> apriori may have interesting features for adaptive
testing.

» But: What to do with infrequent response patterns?
» But: Didn’t | just program a classification tree?

» Perhaps focus on unsupervised part:

> Look for many absents or presents of symptoms.
» Combine with Stochastic Curtailment.

v

| have to re-evaluate.

v

Do you have suggestions?
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L Thanks!

Thanks for your attention!

n.smits@uva.nl
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