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Each sciene contains 
only as much truth as it 
contains mathematics.

Roger Bacon, 1214 – 1292
(talking about Theology)
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Commited crime Male Female

18 years old 3.93 1.58

21 years old 8.50 2.78

25 years old 12.04 3.70

50 years old 19.16 5.82

- physical fitness
- neuroticism
- friends‘ rating

...

So I can get a probability for each of you. Does that help?
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Uncertain Group t-Test: Setting

Every participant has:

We want: 

estimator for the group 
mean difference

likelihood of the 
estimator

confidence 
interval

test statistic against 
no difference

Bayesian 
Posterior

xi (dependent Variable) 
pi (probability to be in group 1)

Assuming normality and variance homogeneity. 
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so

is an estimate for the group mean difference. 
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Group Mean Difference Estimator

Let xi and pi be the target value and probability for group 1 of the ith 
participant, and p the average of the pi. 

An unbiased estimate of  is given by 

where  is the average of the xi. 



Simulation

Data generation:

- pi drawn from a uniform random distribution

- ‚true‘ group drawn from a Bernoulli with parameter pi

- xi generated from a normal with mean dependent on group

Conditions: 

- N from {50,100,500,1000}

- (standardized) effect from 0 to 2

100,000 trials per condition



Simulation Results:  Error

N  Error (95% confidence interval)

50 [0.0597 ; 0.0603]

100 [0.0555 ; 0.0561]

500 [0.0498 ; 0.0504]

1000 [0.0477 ; 0.0483]



Simulation Results: Power

effect size (group difference in stdv)

P
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N = 50N = 100N = 500N = 1000



Power Equivalence

Asymptotically, d is normally distributed and  known. The standard error is  

Assuming                    , we have  
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Power Equivalence

Classical t-test 
pi  {0,1}

Uniform 
distribution



required 
N

N = 100

N = 300

N required to get the same power 
as a classical t-test with N = 100



Power Equivalence Simulation

effect size (group difference in stdv)
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N = 300

no uncertainty, 
N = 100

N = 150

no uncertainty, 
N = 50



Assumption Violation
Variance Homogeneity

If the standard deviation of group 1 and group 2 differ, we expect an
 inflation both for the classical t-Test and the uncertain group t-Test.



Assumption Violation
Variance Homogeneity

standard deviation (group 1 / group 2)

Ty
pe
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 e
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pi ~ B(0.2, 0.8)

no uncertainty, 
P(pi=1) = 80%

pi ~ B(0.5, 0.5)

no uncertainty, 
P(pi=1) = 50%



Assumption Violation
Exaggerated pi

If we are too confident in the probability estimates, do we have an 
 inflation? 
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Assumption Violation
Exaggerated pi

Percentage that pi is moved towards 1 or 0

Ty
pe

 I
 e

rr
or

rounding to classical t-Test



Simulation Results: Power in 
Comparison to standard t-Test

effect size (group difference in stdv)

P
ow

er

N = 100
rounding pi to 0 or 1

N = 100
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effect size (group difference in stdv)
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N = 300

no uncertainty, 
N = 100

N = 150

no uncertainty, 
N = 50

With uniformly distributed 
probabilities, we need three times 
as many participants to have the 
same power as if we know the 
groups.

standard deviation (group 1 / group 2)

T
yp

e
 I 

e
rr

or

pi ~ B(0.2, 0.8)

no uncertainty, 
P(pi=1) = 80%

pi ~ B(0.5, 0.5)

no uncertainty, 
P(pi=1) = 50%

Lack of variance homoegeneity is 
equally bad as with the standard t-Test.

Exaggeration p-values looses power, 
but not correctness. 



Thank You !

MPI for Human Development
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