

Uncertain Group t-Test

Timo von Oertzen, Tina Braun, T. Alexander Bauer, Alexandro Folster

February 27th 2020

Do Aggressive People Earn Higher Salaries ?

 \Rightarrow

Do Aggressive People Earn Higher Salaries ?

 \Rightarrow

Do Aggressive People Earn Higher Salaries ?

What Do We Know ?

Commited crime	Male	Female
Total	13.20	4.32

What Do We Know ?

Commited crime	Male	Female
18 years old	3.93	1.58
21 years old	8.50	2.78
25 years old	12.04	3.70
50 years old	19.16	5.82

What Do We Know ?

Commited crime	Male	Female
18 years old	3.93	1.58
21 years old	8.50	2.78
25 years old	12.04	3.70
50 years old	19.16	5.82

- physical fitness
- neuroticism
- friends' rating

Ξ

So I can get a probability for each of you. Does that help?

Every participant has:

- *x*_{*i*} (dependent Variable)
- p_i (probability to be in group 1)

Every participant has:

x_i (dependent Variable)

 p_i (probability to be in group 1)

Assuming normality and variance homogeneity.

Every participant has:

x_i (dependent Variable)

 p_i (probability to be in group 1)

Assuming normality and variance homogeneity.

We want:

estimator for the group mean difference

Every participant has:

x_i (dependent Variable)

 p_i (probability to be in group 1)

Assuming normality and variance homogeneity.

Every participant has:

x_i (dependent Variable)

 p_i (probability to be in group 1)

Assuming normality and variance homogeneity.

Let x_i and p_i be the target value and probability for group 1 of the i^{th} participant, and \overline{p} the average of the p_i .

$$z = \sum_{i=1}^{N} (p_i - \overline{p}) x_i$$

Let x_i and p_i be the target value and probability for group 1 of the i^{th} participant, and \overline{p} the average of the p_i .

$$z = \sum_{i=1}^{N} (p_i - \overline{p}) x_i$$

then,

$$\mathbb{E}(z) = (\mu_1 - \mu_2) N \mathbb{V}(p)$$

Let x_i and p_i be the target value and probability for group 1 of the *i*th participant, and \overline{p} the average of the p_i .

$$z = \sum_{i=1}^{N} (p_i - \overline{p}) x_i$$

then,

$$\mathbb{E}(z) = (\mu_1 - \mu_2) N \mathbb{V}(p)$$

S0

$$d = \frac{\sum_{i=1}^{N} (p_i - \overline{p}) x_i}{N \mathbb{V}(p)}$$

is an estimate for the group mean difference.

Let x_i and p_i be the target value and probability for group 1 of the i^{th} participant, and \overline{p} the average of the p_i .

$$d = \frac{\sum_{i=1}^{N} (p_i - \overline{p}) x_i}{N \mathbb{V}(p)}$$

by the Central Limit Theorem, d is asymptotically normally distributed, with standard deviation

$$\frac{\hat{\sigma}}{\sqrt{N\mathbb{V}(p)}}$$

where is is a 1/2-degree estimate to father stated and every into o father eating entry variable.

Let x_i and p_i be the target value and probability for group 1 of the i^{th} participant, and \overline{p} the average of the p_i .

$$d = \frac{\sum_{i=1}^{N} (p_i - \overline{p}) x_i}{N \mathbb{V}(p)}$$

by the Central Limit Theorem, d is asymptotically normally distributed, with standard deviation

$$\frac{\hat{\sigma}}{\sqrt{N\mathbb{V}(p)}}$$

where is a A/A-degree estimate to father state that a deviation of the eating state Variable. Therefore,

$$t = d \cdot \frac{\sqrt{N\mathbb{V}(p)}}{\hat{\sigma}}$$

is t-distributed with N-2 degrees of freedom.

Let x_i and p_i be the target value and probability for group 1 of the ith participant, and \overline{p} the average of the p_i .

$$t = d \cdot \frac{\sqrt{N\mathbb{V}(p)}}{\hat{\sigma}}$$

Am unbiased estimate of fsigisereby

$$\hat{\sigma}^2 = \frac{1}{N-2} \left(\left(\sum_{i=1}^N (x_i - \overline{x})^2 \right) - N\overline{p}(1 - \overline{p})d^2 \right)$$

where isistleaverageoptites, xi.

Simulation

Data generation:

- p_i drawn from a uniform random distribution
- ,true' group drawn from a Bernoulli with parameter p_i
- x_i generated from a normal with mean dependent on group

Conditions:

- *N* from {50,100,500,1000}
- (standardized) effect from 0 to 2

100,000 trials per condition

Simulation Results: α Error

Ν	lpha Error (95% confidence interval)
50	[0.0597 ; 0.0603]
100	[0.0555 ; 0.0561]
500	[0.0498 ; 0.0504]
1000	[0.0477 ; 0.0483]

Simulation Results: Power

Assymptotically, disnormally distributed and ôknown. The standard error is

 $\frac{\hat{\sigma}}{\sqrt{N\mathbb{V}(p)}}$

Assuming $p \sim B(\alpha, \alpha)$ we have

$$\mathbb{V}(p) = \frac{1}{4(2\alpha + 1)}$$

Power Equivalence Simulation

Assumption Violation Variance Homogeneity

If the standard deviation of group 1 and group 2 differ, we expect an α inflation both for the classical *t*-Test and the uncertain group *t*-Test.

Assumption Violation Variance Homogeneity

Assumption Violation Exaggerated p_i

If we are too confident in the probability estimates, do we have an α inflation?

Assumption Violation Exaggerated p_i

Assumption Violation Exaggerated p_i

Simulation Results: Power in Comparison to standard *t*-Test

Summary

Fairly simple computations allow a mean comparison between two groups even if we don't know the group of any participant.

$$d = \frac{\sum_{i=1}^{N} (p_i - \overline{p}) x_i}{N \mathbb{V}(p)}$$
$$t = d \cdot \frac{\sqrt{N \mathbb{V}(p)}}{\hat{\sigma}}$$

Summary

Fairly simple computations allow a mean comparison between two groups even if we don't know the group of any participant.

$$d = \frac{\sum_{i=1}^{N} (p_i - \overline{p}) x_i}{N \mathbb{V}(p)}$$
$$t = d \cdot \frac{\sqrt{N \mathbb{V}(p)}}{\hat{\sigma}}$$

With uniformly distributed probabilities, we need three times as many participants to have the same power as if we know the groups.

Summary

Fairly simple computations allow a mean comparison between two groups even if we don't know the group of any participant.

 $d = \frac{\sum_{i=1}^{N} (p_i - \overline{p}) x_i}{N \mathbb{V}(p)}$ $t = d \cdot \frac{\sqrt{N \mathbb{V}(p)}}{\hat{\sigma}}$

With uniformly distributed probabilities, we need three times as many participants to have the same power as if we know the groups.

Lack of variance homoegeneity is equally bad as with the standard t-Test.

Exaggeration p-values looses power, but not correctness.

Thank You !