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What Do We Know ?

Commited crime

Male

Female

Total

13.20

4.32
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Commited crime | Male Female
18 years old 3.93 1.58
21 years old 8.50 2.78
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- physical fitness
- neuroticism
- friends’ rating

So | can get a probability for each of you. Does that help?
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Group Mean Difference Estimator

Let x. and p; be the target value and probability for group 1 of the /it
participant, and p the average of the p..

(pi —P)a

i|M;

then,
E(z) = (u1—p2)NV(p)

SO

d — Zil(ﬁf —D)x;
N NV(p)

IS an estimate for the group mean difference.
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Let x. and p; be the target value and probability for group 1 of the /it
participant, and p the average of the p..
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t=d-

IS t-distributed with N-2 degrees of freedom.



Group Mean Difference Estimator

Let x. and p. be the target value and probability for group 1 of the ith
participant, and p the average of the p..
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Simulation

Data generation:

- p; drawn from a uniform random distribution
- true‘ group drawn from a Bernoulli with parameter p.,
- x; generated from a normal with mean dependent on group

Conditions:

- N from {50,100,500,1000}
- (standardized) effect from O to 2

100,000 trials per condition



Simulation Results: o Error

50 [0.0597 ; 0.0603]
100 [0.0555 ; 0.0561]
500 [0.0498 ; 0.0504]

1000 [0.0477 ; 0.0483]
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effect size (group difference in stdv)



Power Equivalence
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Power Equivalence

stderr(d) =
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P = 4200 + 1) stderr(c) = NV(p)
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Power Equivalence
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Power
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Assumption Violation
Variance Homogeneity

If the standard deviation of group 1 and group 2 differ, we expect an
a inflation both for the classical t-Test and the uncertain group t-Test.
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Assumption Violation
Exaggerated p.

If we are too confident in the probability estimates, do we have an
o inflation?
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Power
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Simulation Results: Power in
Comparison to standard t-Test
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Summary

Fairly simple computations allow a
mean comparison between two
groups even if we don‘t know the
group of any participant.

N —
Y is1(pi — D)y
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t=d. V *?\'TV(IJ)
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no uncertainty, # =
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N=300,/ .
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/ ’ N =50

/ N =150

Power
~
N

effect size (group difference in stdv)

With uniformly distributed
probabilities, we need three times
as many participants to have the
same power as if we know the
groups.

Lack of variance homoegeneity is

equally bad as with the standard t-Test.

Exaggeration p-values looses power,
but not correctness.
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