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Paired Comparison Models

Paired Comparisons

• method of data collection

• given a set of J items

• individuals are asked to judge pairs of objects

j preferred to k

k preferred to j

• aim is to rank objects into a preference order

• obtain an overall ranking of the objects
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Paired Comparison Models

Overview

• LLBT models: loglinear Bradly-Terry models

• Basic LLBT

• Extended LLBT

undecided response

subject covariates

object speci�c covariates

• Pattern Models

Paired comparison �B pattern models

Ranking �B pattern models

Rating �B pattern models
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LLBT

The Basic Bradley-Terry Model (BT)

for the each comparison (jk) of object j to object k we observe:

• n(j�k) . . . the number of times j is preferred to k

• n(k�j) . . . the number of times k is preferred to j

N(jk) = n(j�k) + n(k�j)
total number of responses

to comparison (jk)

the probability that j is preferred to k in comparison (jk)

P (j � k) =
πj

πj + πk

π's are a called worth parameters

and are non-negative numbers

describing the location of the objects
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LLBT

The Basic Loglinear BT Model (LLBT)

the model can be formulated as a log-linear model following the

usual Multinomial / Poisson - equivalence.

the expected value m(j�k) of n(j�k) is m(j�k) = N(jk)p(j�k)

P (j � k) =
πj

πj + πk
= c(jk)

√
πj
√
πk

where c(jk) is constant

for a given comparison

then our basic paired comparison model for one comparison is

lnm(j�k) = µ(jk) + λj − λk
λ's are the object parameters

µ's are nuisance parameters

this model formulation is feasible for further extensions

LMU, 2nd Workshop on Psychometric Computing 2010-02-25



LLBT B Extensions B undecided Response

LLBT with Undecided Response

Using the respeci�cation of the probabilities

suggested by Davidson and Beaver (1977):

the LLBT model formulas for the comparison (jk) are now:

lnm(j�k) = µ(jk) + λj − λk
lnm(k�j) = µ(jk) − λj + λk
lnm(j=k) = µ(jk) + γ

where γ is the parameter for undecided response

(could also be γ(jk))

λ's are the object parameters

µ's are nuisance parameters
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LLBT

terms and relations

• relation between π and λ:

λj = ln
√
πj

πj = exp2λj

• identi�ability of πs is obtained by the restriction

πJ = 1 via λJ = 0

• the worth parameters are calculated by

πj =
exp(2λj)∑
j exp(2λj)

, j = 1,2, . . . , J

where
∑
j πj = 1
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LLBT B Example B CEMS

Example: CEMS exchange programme

students of the WU can study abroad visiting one of currently

17 CEMS universities

aim of the study:

• preference orderings of students for di�erent locations

• identify reasons for these preferences

data:

• PC-responses about their choices of 6 selected CEMS universities for the

semester abroad (London, Paris, Milan, Barcelona, St.Gall, Stockholm)

• answer: can not decide was allowed

• several covariates (e.g., gender, working status, language abilities, etc.)
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prefmod B LLBT CEMS Example

direct estimation: Function: pattPC.fit()

B �t basic LLBT model for PC with undecided

> m3 <- llbtPC.fit(cpc, nitems = 6, undec = TRUE, obj.names = cities)

Calculate worth and plot using llbt.worth(), plotworth()

> worth3 <- llbt.worth(m3)
> plotworth(worth3)
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LLBT B Extension B Subject Covariates

Subject Covariates

Are the preference orderings di�erent for di�erent groups of

subjects?

For one subject covariate on s levels we have now

lnm(j�k)|s = µ(jk)s+ λSs + (λ
Oj
j + λ

OjS
js )− (λ

Ok
k + λ

OkS
ks )

where

λO object parameters (for subject baseline group)

λOS interaction parameter between objects and subject category

λSs �xing the margin for category s of covariate S (nuisance)

µ's nuisance parameters
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prefmod B LLBT Subject Covariates CEMS Example

Options for: llbtPC.fit(): formel, elim

B �t model for SEX*WORK

> msw <- llbtPC.fit(cpc, nitems = 6, undec = TRUE, formel = ~SEX *
+ WORK, elim = ~SEX * WORK, obj.names = cities)

Options


formel =∼ SEX ∗WORK model is

OBJ+OBJ : (SEX ∗WORK)
OBJ is (LO+PA+M+SG+BA+ST)

elim =∼ SEX ∗WORK de�nes maximal table

B now we can easily generate worth by using

> wsw <- llbt.worth(msw)

B and plot results by

> plotworth(wsw)
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prefmod B LLBT CEMS Example - Plot
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LLBT B Example B CEMS B object cov

Example: CEMS exchange programme

• We are interested if universities with a common attribute

can be regarded as a group having the same rank

• consider the attribute LAT (with two levels):

• universities PA, MI, BA with latin language: LAT = 1

• universities LO, SG, ST no latin language: LAT = 0

The values for LAT are given as follows:

Objects LO PA MI SG BA ST

LAT 0 1 1 0 1 0
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prefmod B LLBT Design Matrix Approch CEMS Example

Function: llbt.design()

B generating the design matrix into data frame

> des <- llbt.design(cpc, 6, objnames = cities, cov.sel = c("SEX",
+ "WORK"))

B categorical subject covariates must be declared as factor()

> des$SEX <- factor(des$SEX)
> des$WORK <- factor(des$WORK)

B declare object covariate:

reparameterizing the objects (cf. LLTM)

> LAT <- c(0, 1, 1, 0, 1, 0)
> objects <- as.matrix(des[6:11])
> mLAT <- objects %*% LAT
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prefmod B LLBT Design Matrix Approch CEMS Example

B �t model using standard R function gnm()

gnm() generalised nonlinear models (Turner, Firth)

B �t a speci�c model:

e.g. di�erent preference scales for SEX

but Latin cities (mLAT) combined with WORK

> mdsLw <- gnm(y ~ LO + PA + MI + SG + BA + ST + (LO + PA +
+ MI + SG + BA + ST):SEX + mLAT:WORK + g1, elim = mu:SEX:WORK,
+ family = poisson, data = des)

Note: g1 is the undecided parameter
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LLBT Remarks

Remarks

1. it is assumed that the decisions are independent!

(may be not reasonable)

2. missing values (NA) can occur in the comparisons

just reduce the number of respondents Nij
but no missing values are allowed in the subject covariates

3. the number of rows of the design matrix is:

number of comparisons ×
number of possible decisions ( response categories) ×
number of subject groups
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Pattern Model

Paired Comparison Pattern Models

• di�erent approach
but includes all extensions mentioned so far

• more general concerning further extensions

B pattern models maintain information of

all individual responses to PC

B as opposed to LLBT-models, which are marginal models

B we model the complete responses Y simultanously

Y = (Y12, Y13, . . . YJ−1,J)

What are paired comparison response patterns?

comparison (12) (13) (23) . . .
response (1 � 2) (3 � 1) (2 � 3) . . .
random variable Y12 Y13 Y23 . . .
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Pattern Model

The BT Model as a Pattern Model

Yjk =

{
1 if object Oj is preferred to Ok (j � k)
−1 if object Ok is preferred to Oj (k � j)

P (j � k) = P (Yjk = 1) = c

(√
πj
√
πk

)yjk

the probability for a speci�c response pattern e.g. (1, 1, 1 )
which means (1 � 2), (1 � 3), (2 � 3) is given by:

p(1, 1, 1 ) = δ

(√
π1√
π2

)(√
π1√
π3

)(√
π2√
π3

)

the log-linear pattern model can be written as:

lnm(1, 1, 1) = ln δ+2λ1 − 2λ3

• all possible patterns are number of responses (2)(
J

2) (if no undecided)
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Pattern Model B Extensions B Dependencies

Dependencies

one important feature of the pattern models is

• we can give up the (unrealistic) assumption of independent

decisions

• we assume that dependencies between responses come from

repeated evaluation of the same objects in PC

comparing (j with k ) and comparing (j with l)

the assessment of common object j might be similar in both

comparisons

we can now include dependence terms of the form:

θ(jk),(jl)

for pairs of comparisons with one object in common
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LLBT B Example B Teacher

What makes a good teacher ?

239 education students at Vienna were asked to compare quali-

ties of a good teacher in 2006 through a complete paired com-

parison experiment

Quality of the teachers are:

ST Structure of instruction

CM Class Management: productive environment - not wasting time

AC Activity: Success in getting students to participate

SU Support: Looking after every single pupil

B subject covariates

SEX gender (1 = female) (2 = male)

SCH school (1 = secondary) (2 = vocational) (3 = university)

• no undecided

• but missing values (NA)
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prefmod B Pattern Model PC Teacher example

�t basic model using pattPC.fit()

> mtp <- pattPC.fit(teacher4, nitems = 4, undec = F, ia = T,
+ formel = ~1, elim = ~SEX * SCH, obj.names = it4)

Options =



teacher4 data.frame
nitems = 4 4 items
undec = F no undecided
ia = T all possible dependencies
formel =∼ 1 model is ST+CM+AC+SU
elim =∼ SEX ∗ SCH de�nes maximal table
obj.names = it4 names of items

some other Options: B see ?pattPC.�t

Calculate worth and plot using patt.worth(), plotworth()

> wp <- patt.worth(mtp)
> plotworth(wp)
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Missing values

Treatment of Missing Values in Pattern Models

• each di�erent missing pattern gives a di�erent design matrix
(smaller than design matrix for non-missing data)

• likelihood is computed for each of these "di�erent" tables �
"individual" contributions

• total likelihood (which is then maximised)
is the sum of all the "individual" contributions

implemented in prefmod

• in pattPC.fit()
(and in all patt*.fit() functions )

• computationally demanding
escpecially with large tables and many di�erent missing value patterns

• rough check for "not ignorable" missing
use option: NItest = T
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Pattern Model B Extensions B Rankings B Example

Example: Rankings

Vargo (1989) collected a ranking data set

which was analysed by Critchlow, Fligner (Psychometrika, 1991)

• 32 judges were asked to rank

four salad dressings according tartness.

• A low rank means very tart.

salads A - D have varying concentrations
the four pairs of concentrations of acetic and gluconic acid are:

A = (.5, 0), B = (.5, 10.0), C = (1.0, 0), and D = (0, 10.0)
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Pattern Model B Extensions B Rankings

Response Format: Rankings

full rankings:

• people are asked to rank objects (items) regarding a certain

aspect (tartness)

• all possible pairs are constructed afterwards

• no undecided category !

ordinal response formats are transformed into paired comparisons

• resulting PCs are called derived PC patterns

• no intransitive patterns possible

• no dependencies
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Pattern Model B Extensions B Rankings

Transformation: Ranking to PC

• number of possible patterns is 3! = 6 compared to 2(
3
2) = 8
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Pattern Model B Extensions B Rankings

Pattern Model: Rankings

The probability for the ranking R = 2, G = 3, B = 1

transformed into pattern 1, −1, −1 is given by:

p(sk)⇒ p(y12, y13, y23) = δ

(√
π1√
π2

)1(√
π1√
π3

)−1(√
π2√
π3

)−1

p(2,3,1)⇒ p(s4) = p(1,−1,−1) = δ

(√
π1√
π2

)(√
π3√
π1

)(√
π3√
π2

)

The log expected number for the ranking can be rewritten as

lnm(1,−1,−1) = ln δ − 2λ2 +2λ3
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prefmod B Pattern Model Rankings SALAD Example

direct estimation: Function: pattR.fit()

B �t basic pattern model for rankings

> salmod <- pattR.fit(salad, nitems = 4)
> summary(salmod)

Calculate worth and plot using patt.worth(), plotworth()

OR

B �t model using design matrix approach

patt.design() and use glm() or gnm()

> saldes <- patt.design(salad, nitems = 4, resptype = "ranking")
> salmod2 <- glm(y ~ A + B + C + D, family = poisson, data = saldes)

B to �t object covariates use design matrix approach
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Pattern Model B Extensions B Ratings B Example

Example: Ratings

we used a data set collected by the British Household Panel

Study in 1996 where we have chosen three Likert items which

ask respondents for their concern about:

• the destruction of the ozone layer (OZ)

• the high rate of unemployment (UN)

• declining moral standards (MO)

the possible answers are:

• A great deal . . . . . 1

• A fair amount . . . . 2

• Not very much . . . 3

• Not at all . . . . . . . . 4

low numbers mean a high concern and higher number lower con-

cern!
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Pattern Model B Extensions B Ratings

Transformation: Ratings to PC

for example the Likert response pattern was

OZ = 1, UN = 4, MO = 4

we have 3 items and therefore 3 comparisons:

(12) =(OZ, UN) (13) =(OZ,MO) (23) =(UN,MO)

• as OZ � UN we assign y12 = 1
• as OZ � MO we assign y13 = 1
• as UN = MO we assign y23 = 0 which is undecided

so we get the following (derived) PC pattern: 1, 1, 0
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Pattern Model B Extensions B Ratings

Pattern Model: Ratings

the probability for the rating OZ = 1, UN = 4, MO = 4

transformed into pattern (1, 1, 0) is given by:

p(1,1,0) = δ

(√
π1√
π2

)(√
π1√
π3

)
u23

the log expected number for the rating can be rewritten as

lnm(1,1,0) = ln δ+2λ1 − 1λ2 − 1λ3 + γ23

where γ is the undecided parameter
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Pattern Model B Extensions B Ratings

Transformation: Rating to PC

restricted example for 3 items, only 2 response categories

e.g., concern yes= 1 and concern no= 2

Rating derived unique
patterns PC-patterns PC-patterns

i1 i2 i3 y12 y13 y23
1 1 1 0 0 0 0 0 0
1 1 2 0 1 1 0 1 1
1 2 1 1 0 -1 1 0 -1
1 2 2 1 1 0 1 1 0
2 1 1 -1 -1 0 -1 -1 0
2 1 2 -1 0 1 -1 0 1
2 2 1 0 -1 -1 0 -1 -1
2 2 2 0 0 0

B for 3 items only 7 possible patterns (instead of 9 = 33 possible patterns)
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prefmod B Pattern Model Ratings BHH Example

direct estimation: Function: pattL.fit()

B �t basic pattern model for ratings

> t3dat <- read.table("t3dat.dat", header = TRUE)
> lm1 <- pattL.fit(t3dat, 3, undec = T, elim = ~sex * age4k)

Calculate worth and plot using patt.worth(), plotworth()

> w1 <- patt.worth(lm1)
> plotworth(w1)
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prefmod B Pattern Model Ratings BHH Example

Overview of main prefmod functions

Response Model Data Designmatrix Estimation Notes

Real PCs

Data llbt.design() glm(), gnm() 1,2,(3),4,5

Data llbt.design() llbt.fit() 1,3,4,5LLBT

Data −→ llbtPC.fit() 1,(3),(5),7

Data patt.design() glm(), gnm() 2,4,(5),6
Pattern

Data −→ pattPC.fit() 1,(5),6,7

Ranking
Data patt.design() glm(), gnm() 2,4,(5)

Pattern
Data −→ pattR.fit() 1,(3),5,7

Rating
Data patt.design() glm(), gnm() 2,4,(5),6

Pattern
Data −→ pattL.fit() 1,5,6,7

(1) NAs
(2) R standard output
(3) larger number of objects
(4) object-speci�c covariates

(5) continuous subject covariates
(6) dependencies
(7) worth matrix, worth plot
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B Further Extensions

Further Extensions in prefmod()

• multidimensional PC pattern models

when objects are compared on more than one attribute

• repeated evaluation of the same objects by the same judges

(panel data)

• mixture models (latent class) for all extensions

• further response formats

e.g. partial rankings, piling, best to worst scaling

• combination of the various options mentioned
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