\square

'Extended' Bradley-Terry models

David Firth and Heather Turner

Department of Statistics
University of Warwick

Munich, 2010-02-25

Extended Bradley-Terry models
$\left\llcorner_{\text {Introduction: }}\right.$ Bradley-Terry model and extensions

Bradley-Terry model

The basic model:

$$
\operatorname{pr}(i \text { beats } j)=\frac{\alpha_{i}}{\alpha_{i}+\alpha_{j}}
$$

with α_{i} the relative 'ability' of object i.

Work with \log abilities:

$$
\begin{aligned}
\operatorname{logit}[\operatorname{pr}(i \text { beats } j)] & =\log \left(\alpha_{i}\right)-\log \left(\alpha_{j}\right) \\
& =\lambda_{i}-\lambda_{j} .
\end{aligned}
$$

Extended Bradley-Terry models L-Introduction: Bradley-Terry model and extensions
'Structured' Bradley-Terry model
$\qquad$$\lambda_{i}$ $=f_{i}(\beta)+U_{i}$ $=\sum_{r} \beta_{r} x_{i r}+U_{i} \quad$ (for example)

- attributes of objects/players predict ability
- U_{i} is random error, with variance σ^{2}, say - needed in order to allow for imperfect prediction
- \Rightarrow complex random effects model, with linear predictor

$$
\sum_{r}\left(x_{i r}-x_{j r}\right) \beta_{r}+\left(U_{i}-U_{j}\right)
$$

Extended Bradley-Terry models
-Introduction: Bradley-Terry model and extensions

Pair-comparison studies

Sport: player i beats player j
Psychometrics: object i is preferred to object j

Sport (etc.): interest in players and their attributes
Psychometrics (etc.): interest in judges (subjects) and their attributes

Extended Bradley-Terry models
LIntroduction: Bradley-Terry model and extensions

Extensions?

We will focus here on three possible directions from the basic model:

1. (Log-)abilities λ_{i} determined/predicted by object covariate vector x_{i}.
2. $\lambda_{i} \rightarrow \lambda_{i k}$: the ability of object i varies between different comparisons k.
3. i versus j, no preference? ('tied' comparisons)
[^0]Ability varying between comparisons

$$
\lambda_{i} \rightarrow \lambda_{i k}
$$

e.g., time-varying covariates,

$$
\lambda_{i k}=\sum_{r} \beta_{r} x_{i k r}+U_{i}
$$

e.g., subject-specific abilities,

$$
\lambda_{i k}=\lambda_{i s}
$$

where $s=s(k)$ identifies the subject who makes comparison k.
e.g., abilities predicted by subject covariates,

$$
\lambda_{i s}=\sum_{t} \gamma_{i t} z_{s t}+E_{i s}
$$

Extended Bradley-Terry models
 $\mathrm{L}_{\text {Introduction: }}$ Bradley-Terry model and extensions
 Ability varying between comparisons (continued)

e.g., still with abilities $\lambda_{i s}$ varying between subjects, a particular form likely to be useful is multiplicative interaction,

$$
\lambda_{i s}=\lambda_{i} \exp \left(\sum_{t} \gamma_{t} z_{s t}\right)+E_{i s}
$$

This last form is not yet implemented in the BradleyTerry2 package; it will require features from the gnm (generalized nonlinear models) package.

Extended Bradley-Terry models
 LImplementation in R: The Bradley Terry2 package

Implementation in R : The BradleyTerry2 package

Main new features

- flexible formula interface to modelling fitting function $\operatorname{BTm}()$: allows object-specific, subject-specific, contest-specific variables and random effects [limited implementation]
- efficient data management of multiple data frames

Best of original BradleyTerry package

- translation of formula to appropriate design matrix
- methods for fitted model object, e.g. anova, BTabilities
- missing data handling

```
Extended Bradley-Terry models
    LImplementation in R: The BradleyTerry2 package
Data Structure
> library(BradleyTerry2); data(CEMS); str(CEMS)
List of 3
    $ preferences:'data.frame': 4545 obs. of 8 variables:
        .$ student : num [1:4545] 1 1 1 1 1 1 1 1 1 1 1 %...
        .$ school1 : Factor w/ 6 levels "Barcelona","London",..: 2 2 4
        ..$ school2 : Factor w/ 6 levels "Barcelona","London",..: 4 3 3
        ..$ win1 : num [1:4545] 1 1 NA 0 0 0 1 1 0 1 ...
    ..
    $ students :'data.frame': 303 obs. of 8 variables
    ..$ STUD: Factor w/ 2 levels "other","commerce": 1 2 1 2 1 1 1 2
    ..$ ENG : Factor w/ 2 levels "good","poor": 1 1 1 1 2 1 1 1 2 1
    $ schools :'data.frame': 6 obs. of 7 variables:
        .$ Barcelona: num [1:6] 1 0 0 0 0 0
    ..$ London : num [1:6] 0 1 0 0 0 0
```

...

Data Structure```> library(BradleyTerry2); data(CEMS); str(CEMS) List of 3 $ preferences:'data.frame': 4545 obs. of 8 variables: ..$ student : num [1:4545] 1 1 1 1 1 1 1 1 1 1 1$ school1 : Factor w/ 6 levels "Barcelona","London",..: 2 2 4 ..$ school2 : Factor w/ 6 levels "Barcelona","London",..: 4 3 3 ..$ win1 : num [1:4545] 1 1 NA 0 0 0 1 1 0 1 $ students :'data.frame': 303 obs. of 8 variables: ..$ STUD: Factor w/ 2 levels "other","commerce": 1 2 1 2 1 1 1 2 ..$ ENG : Factor w/ 2 levels "good","poor": 1 1 1 1 2 1 1 1 2 1 ... $ schools :'data.frame': 6 obs. of 7 variables: ..$ Barcelona: num [1:6] 1 0 0 0 0 0 ..$ London : num [1:6] 0 1 0 0 0 0 ...```

Extended Bradley-Terry models
$L_{\text {Introduction: }}$ Bradley-Terry model and extensions

Ties

What to do when neither i nor j is preferred?
Elaborate the Bradley-Terry model? (Rao and Kupper, 1967;
Davidson, 1970)

A crude alternative approach/approximation:
tie $=$ half a 'win' for each of i and j

Suggests a generalization: half \rightarrow some other fraction?

Extended Bradley-Terry models
$\left\llcorner_{\text {Implementation in } R \text { : The BradleyTerry2 package }}\right.$

CEMS Data

The CEMS data (Dittrich et al, 1998) concern the preferences of students in selecting a school from the Community of European Management Schools for their international visit.

- 6 CEMS schools are covered in the survey
- students were to choose between each pair of schools (ties allowed)
- further data collected on students e.g. type of degree, language skills

Extended Bradley-Terry models
 LImplementation in R: The BradleyTerry2 package
 Standard Bradley Terry Model

A Bradley-Terry model with a separate ability for each player can be specified as follows
> standardBT <- BTm(outcome = cbind(win1.adj, win2.adj), player1 = data.frame (school = school1), player2 = data.frame (school = school2), id = "school", formula $=$ ~ school,
refcat = "Stockholm",
data $=$ CEMS\$preferences)
Or we can use the default id, ".."
> standardBT <- BTm(outcome = cbind(win1.adj, win2.adj),
player1 = school1, player2 = school2,
formula $=$ ~ .., refcat $=$ "Stockholm",
data $=$ CEMS\$preferences)

Extended Bradley-Terry models
$L_{\text {Implementation in R: The BradleyTerry2 package }}$

Model Summaries

For models with no random effects, BTm returns an object which is essentially a "glm" object, hence the usual model summaries can be obtained, e.g. print():

Bradley Terry model fit by glm.fit
Call: BTm (outcome $=$ cbind(win1.adj, win2.adj), player1 $=$ school1, player2 $=$ school2, formula $=\sim$.., refcat $=$ "Stockholm",
data $=$ CEMS\$preferences)
Coefficients:
. Barcelona ..London ..Milano \quad..Paris \quad..St.Gallen

Degrees of Freedom: 4454 Total (i.e. Null); 4449 Residual
(91 observations deleted due to missingness)
Null Deviance: 5499
Residual Deviance: 4929 AIC: 5854
Warning message:
In eval(expr, envir, enclos) : non-integer counts in a binomial glm!

Extended Bradley-Terry models

LImplementation in R: The Bradley Terry2 package

Object and Subject Variables

The final model in Dittrich et al, incorporating interactions with subject-covariates, can be estimated as follows
> interactionBT <- BTm(outcome = cbind(win1.adj, win2.adj), player1 = school1, player2 = school2,
formula $=$ ~ . . +
WOR[student] * LAT[..] +
DEG[student] * St.Gallen [..] +
STUD[student] * (Paris[..] + St.Gallen[..]) +
ENG[student] * St.Gallen[..] +
FRA[student] * (London[..] + Paris[..]) +
SPA[student] * Barcelona[..] +
ITA[student] * (London[..] + Milano[..]) +
SEX[student] * Milano[..],
refcat $=$ "Stockholm", data $=$ CEMS)

Extended Bradley-Terry models
$\left\llcorner_{\text {Implementation in R: The BradleyTerry2 package }}\right.$

Interaction Model

> summary(interactionBT)\$coef[, 1:2]/1.75
Estimate Std. Error

. Barcelona	Estimate Std. Error
.. London	1.0363917
.	0.10184195
	1.2734839
0.10523535	

.Milano 1.11362110 .10030192
. Paris
. .St.Gallen
WOR[student]yes:LAT[..]
DEG[student]yes:St.Gallen[..]
STUD [student] commerce: Paris [. .] St.Gallen[..]:STUD [student] commerce
St.Gallen[..]:ENG[student] poor
FRA[student] poor:London[..]
Paris[..]:FRA[student]poor
SPA [student] poor: Barcelona[..]
London[..]:ITA[student]poor
ITA[student]poor:Milano[..]
Milano[..]:SEX[student]male

LImplementation in R: The BradleyTerry2 package

Baseball Data

The baseball data (Agresti, 2002) gives the results for 7 teams of the Eastern Division of the American League during the 1987 season:

```
> str(baseball)
```

'data.frame': 42 obs. of 4 variables:
\$ home.team: Factor w/ 7 levels "Baltimore", "Boston",..: 55555
\$ away.team: Factor w/ 7 levels "Baltimore","Boston",..: 47623
\$ home.wins: int 4446463446 ...
\$ away.wins: int $3231203230 \ldots$

Extended Bradley-Terry models
Implementation in R: The BradleyTerry2 package

Standard Bradley-Terry Model

> (baseballModel1 <- BTm(cbind(home.wins, away.wins), home.team,
away.team, data = baseball, id = "team"))
Bradley Terry model fit by glm.fit
Call: BTm(outcome = cbind(home.wins, away.wins), player1 = home.team, player2 = away.team, id = "team", data = baseball)

Coefficients:
teamBoston teamCleveland teamDetroit teamMilwaukee
$1.1077 \quad 0.6839 \quad 1.4364 \quad 1.5814$
teamNew York teamToronto
$1.2476 \quad 1.2945$

Degrees of Freedom: 42 Total (i.e. Null); 36 Residual
Null Deviance: 78.02
Residual Deviance: 44.05 AIC: 140.5

Extended Bradley-Terry models
LImplementation in R: The Bradley Terry2 package

Springall Data

The springall data (Springall, 1973) gives the results of an experiment in which assessors were asked to determine which of two samples had the lesser flavour strength.

Samples were determined by a 3×3 factorial design, with factors flavour contentration and gel concentration.

The aim of the experiment was to describe the response surface over the two factors.

Extended Bradley-Terry models LImplementation in R: The BradleyTerry2 package				
Response Surface Model				
Bradley Terry model fit by glmmpl.fit				
PQL algorithm converged to fixed effects model				
Call: BTm (outcome $=$ cbind(win.adj, loss.adj), player1 $=$ col, player2 $=$ row, formula $=$-flav[..] + gel[..] + flav.2[..] + gel.2[..] + flav.gel[..] + (1 \| ..), data = springall)				
Coefficients:				
-0.41194	-0.32578	0.01565	0.10506	0.02376
Degrees of Freedom: 36 Total (i.e. Null); 31 ResidualNull Deviance:327.9				
Residual Deviance: 15.47 AIC: 113				

Extended Bradley-Terry models
 $\left\llcorner_{\text {Implementation in R: The BradleyTerry2 package }}\right.$

Comparing Models

```
> anova(baseballModel1, baseballModel2)
Analysis of Deviance Table
Response: cbind(home.wins, away.wins)
Model 1: ~team
Model 2: ~team + at.home
    Resid. Df Resid. Dev Df Deviance
1 Resid. Dr Resid. Dev
2 35 38.643 1 5.4106
```


Random Effects

The flavour strength over the design region can be modelled by a second order response surface model, with random effects to allow for variation between samples with the same covariates:
> springall.model <- BTm(cbind(win.adj, loss.adj), col, row,
flav[..] + gel[..] +
flav.2[..] + gel.2[..] + flav.gel[..] +
(1 | ..),
data $=$ springall)

Extended Bradley-Terry models
$\square_{\text {Implementation in } \mathrm{R} \text { : The BradleyTerry2 package }}$
Second Order Response Surface

Extended Bradley-Terry models
LImplementation in R: The Bradley Terry2 package

Simplified Model

> springall.model2 <- update(springall.model, ~ . - flav.2[..]) Bradley Terry model fit by glmmPQL.fit

Call:
BTm (outcome $=$ cbind(win.adj, loss.adj), player1 = col, player2 = row, formula $={ }^{\sim}$ flav[..] $+\operatorname{gel}[.]+$. gel.2[..] + flav.gel[..] + (1 | ..), data = springall)

Fixed effects:

flav[..]	gel[..]	gel.2[..]	flav.gel[..]
-0.26366	-0.32690	0.10416	0.02476

Random Effects Std. Dev.: 0.1406561

Extended Bradley-Terry models
$\left\llcorner_{\text {Implementation in }}\right.$ R: The BradleyTerry2 package

Fitted Response Surface

Extended Bradley-Terry models
$\left\llcorner_{\text {More on handling ties }}\right.$

$$
\begin{aligned}
\nu & \rightarrow \infty: \operatorname{pr}(\text { tie })
\end{aligned} \rightarrow 1
$$

The single extra parameter ν conflates

- overall (max) probability of a tie
- strength of dependence of $\operatorname{pr}($ tie $)$ on α_{i}, α_{j}.

And the strongest dependence allowed (i.e., as $\nu \rightarrow 0$) is actually rather weak.
(Same comments apply to the Rao-Kupper model for ties.)

Extended Bradley-Terry models

$\square_{\text {More on handling ties }}$

A '2-parameter' model for ties

Details omitted here - paper in preparation, preprint to appear soon at http://go.warwick.ac.uk/dfirth

[^0]: Extended Bradley-Terry models
 Introduction: Bradley-Terry model and extensions

