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R and MATLAB
We present the R (http://www.r-project.org/) package
fechner for Fechnerian scaling (FS) of object sets. Available on
CRAN http://cran.r-project.org/package=fechner.

Other software for FS includes FSCAMDS, which runs on
MATLAB, and a MATLAB toolbox. This software can be
downloaded from, in respective order,
http://www.psych.purdue.edu/∼ehtibar/ and
http://www.psychologie.uni-oldenburg.de/stefan.rach/.

The finite, discrete version of FS, by far the most important for
practical applications, is discussed in Dzhafarov and Colonius
(2006). As any data set is necessarily finite, this is the version
implemented in the package fechner.

Dzhafarov, E.N., & Colonius, H. (2006). Reconstructing distances among objects from
their discriminability. Psychometrika, 71, 365–386.

Ünlü, A., Kiefer, T., & Dzhafarov, E.N. (2009). Fechnerian scaling in R: The package
fechner. Journal of Statistical Software, 31(6), 1–24.
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ψ-Data

Let {x1, . . . , xn} be a set of objects endowed with a discrimination
function ψ (xi , xj). The primary meaning of ψ (xi , xj) in FS is the
probability with which xi is judged to be different from xj .

For example, a pair of colors (xi , xj) may be repeatedly presented
to an observer (or a group of observers), and ψ (xi , xj) may be
estimated by the frequency of responses “they are different.”

An empirical fact is that ψ (xi , xj) is not a metric:

◮ ψ (xi , xi) is not always zero;

◮ moreover, ψ (xi , xi) and ψ (xj , xj) for i 6= j are not generally
the same;

◮ ψ (xi , xj) is generally different from ψ (xj , xi);

◮ and the triangle inequality is not generally satisfied,
ψ (xi , xj) + ψ (xj , xk) may very well be less than ψ (xi , xk).
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Regular Minimality

The only property of the ψ-data required by FS is regular
minimality (RM):

◮ for every xi there is one and only one xj such that
ψ (xi , xj) < ψ (xi , xk) for all k 6= j (this xj is called the Point
of Subjective Equality, PSE, of xi);

◮ for every xj there is one and only one xi such that
ψ (xi , xj) < ψ (xk , xj) for all k 6= i (this xi is called the PSE of
xj);

◮ and xj is the PSE of xi if and only if xi is the PSE of xj .

Every data matrix in which the diagonal entry ψ (xi , xi) is smaller
than all entries ψ (xi , xk) in its row (k 6= i) and all entries ψ (xk , xi)
in its column (k 6= i) satisfies RM in the simplest, so-called
canonical, form. In this case every object xi is the PSE of xi .
(Note that regular maximality can be defined analogously,
replacing “minimal” with “maximal.”)
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Canonical Relabeling
If RM is satisfied, the row objects (first observation area) and
column objects (second observation area) can be presented in pairs
of PSEs (x1, xk1) , (x2, xk2) , . . . , (xn, xkn

), where (k1, k2, . . . , kn) is a
permutation of (1, 2, . . . , n).

FS identifies these PSE pairs and then relabels them so that two
members of the same pair receive one and the same label:

(x1, xk1) 7→ (a1, a1) , (x2, xk2) 7→ (a2, a2) , . . . , (xn, xkn
) 7→ (an, an) .

The relabeled and permuted matrix of ψ-data is a matrix in which
each diagonal entry is minimal in its row and in its column. After
this relabeling the original function ψ (xi , xj) is redefined:

pij := ψ(ai , aj) := ψ
(

xi , xkj

)

.

In the package fechner the pairs of PSEs are assigned identical
labels leaving intact the labeling of the rows and relabeling the
columns with their corresponding PSEs. This is referred to as
canonical relabeling.



Fechnerian Distance
For every pair of objects (ai , aj) consider all possible chains of
objects (ai , ak1 , . . . , akr

, aj), where (ak1 , . . . , akr
) is a sequence

chosen from {a1, . . . , an}. For each such a chain compute what is
called its psychometric length (of the first kind)

L(1) (ai , ak1 , . . . , akr
, aj) =

m=r
∑

m=0

(

pkmkm+1 − pkmkm

)

,

where ai = ak0 and aj = akr+1 . The quantities pkmkm+1 − pkmkm
are

referred to as psychometric increments of the first kind.

Find a chain with the minimal value of L(1), and take this minimal
value of L(1) for the quasidistance (quasimetric, or oriented metric)

G
(1)
ij from ai to aj (oriented Fechnerian distance of the first kind).

This quasimetric is symmetrized and transformed into a metric by

computing G
(1)
ij + G

(1)
ji , and taking it for the overall Fechnerian

distance Gij between ai and aj .



Geodesic Chain, Geodesic Loop

Any chain (ai , ak1 , . . . , akr
, aj) with L(1) (ai , ak1 , . . . , akr

, aj) = G
(1)
ij

is called a geodesic chain (of the first kind).

The concatenation (ai , ak1 , . . . , akr
, aj , al1 , . . . , als , ai) of a geodesic

chain (ai , ak1 , . . . , akr
, aj) and a geodesic chain (aj , al1 , . . . , als , ai)

is called a geodesic loop.

The overall Fechnerian distance Gij is the psychometric length (of
the first kind) of a geodesic loop (ai , ak1 , . . . , akr

, aj , al1 , . . . , als , ai),
or equivalently, (aj , al1 , . . . , als , ai , ak1 , . . . , akr

, aj).



Second Observation Area
One can also compute the psychometric length (of the second
kind) of a chain (ai , ak1 , . . . , akr

, aj) as

L(2) (ai , ak1 , . . . , akr
, aj) =

m=r
∑

m=0

(

pkm+1km
− pkmkm

)

,

where pkm+1km
− pkmkm

are called psychometric increments of the
second kind. Define the quasidistance (oriented Fechnerian

distance of the second kind) G
(2)
ij from ai to aj as the minimal

value of L(2) across all chains inserted between ai and aj .

It makes no difference for the final computation of the overall
Fechnerian distance Gij :

Gij = G
(1)
ij + G

(1)
ji = G

(2)
ij + G

(2)
ji .

The L(1)–length of any loop (ai , ak1 , . . . , akr
, aj , al1 , . . . , als , ai)

equals the L(2)–length of the same loop traversed in the opposite
direction, (ai , als , . . . , al1 , aj , akr

, . . . , ak1 , ai).



S–Index, C–Index
The package fechner compares the value of Gij to a generalized
Shepardian index of dissimilarity (S–index)
Sij = pij + pji − pii − pjj . Note that Gij ≤ Sij for all (ai , aj).

The comparison Gij versus Sij is of interest because it shows how
different the psychometric increments pij − pii are from an oriented
metric. If Gij = Sij for all (ai , aj), then the psychometric increments
pij − pii form an oriented metric, and the computation of Gij is
reduced to simple symmetrization: (pij − pii) + (pji − pjj) = Sij .

The greater the number of points (ai , aj) for which Gij < Sij and
the greater the differences Sij − Gij , the greater the
“non-metricality” of the psychometric increments pij − pii . To
quantify this “non-metricality” FS uses an ad hoc descriptive index
(C–index)

C =
2

∑

(Sij − Gij)
2

∑

S2
ij +

∑

G2
ij

.
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Functions, I: Main Function

The main function of the package is fechner:

fechner(X, format = c("probability.different", "percent.same", "general"),

compute.all = FALSE, check.computation = FALSE)

The short computation returns a list, of the class fechner,
containing such information as the pairs of PSEs, the canonical
representation of the data in which regular minimality/maximality
is satisfied in the canonical form and the rows and columns are
canonically relabeled, the S–index, and most importantly, the
overall Fechnerian distances and geodesic loops.

The long computation additionally yields intermediate results, such
as the psychometric increments, the oriented Fechnerian distances,
and the geodesic chains, and it also allows to check the equality
(

G
(1)
ij + G

(1)
ji

)

−
(

G
(2)
ij + G

(2)
ji

)

= 0.



Functions, II: Checking Properties

Regular minimality/maximality can be checked using the function
check.regular:

check.regular(X, type = c("probability.different", "percent.same",

"reg.minimal", "reg.maximal"))

This function returns a list consisting of the canonical
representation of the data, the pairs of PSEs, a character string
saying which check was performed (regular minimality or regular
maximality), and a logical indicating whether the original data are
already in the canonical form.

The data format can be checked using the function check.data:

check.data(X, format = c("probability.different", "percent.same", "general"))

This function returns a matrix of the data with rows and columns
labeled.



Functions, III: Plot, Print, and Summary Methods

plot(x, level = 2) graphs the results obtained in the FS
analyses. It produces a scatterplot of the overall Fechnerian
distance G versus the S–index, with rugs added to the axes and
jittered to accommodate ties in the S–index and G values. The
level of comparison refers to the minimum number of links in
geodesic loops for the pairs of stimuli considered for the
comparison.

print(x) prints the main results obtained in the FS analyses,
which are the overall Fechnerian distances and the geodesic loops.

summary(object, level = 2) outlines the results obtained in
the FS analyses. It returns a list consisting of the pairs of objects
and their corresponding S–index and G values, the value of the
Pearson correlation coefficient between them, the value of the
C–index, and the level of comparison chosen.
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Morse Code Data, I

morse: Rothkopf’s (1957) Morse
code data of discrimination
probabilities among 36 auditory
Morse code signals for the let-
ters A,B, . . . ,Z and the digits
0, 1, . . . , 9. The morse data
frame consists of 36 rows and
36 columns, representing the
Morse code signals presented
first and second, respectively.
Each number in the data frame
gives the percentage of subjects
who responded “same” (choosing
between “same” and “different”)
to the row signal followed by the
column signal.

Morse code letters and digits

Rothkopf, E.Z. (1957). A measure of
stimulus similarity and errors in some
paired-associate learning tasks. Journal

of Exp. Psychology, 53, 94–101.



Morse Code Data, II
For typographic reasons, we consider the 10-code subspace of the
36 Morse codes consisting of the codes for the letter B and the
digits 0, 1, 2, 4, 5, . . . , 9.

R> indices <- which(is.element(names(morse), c("B", c(0, 1, 2, 4:9))))

R> (morse.subspace <- morse[indices, indices])

B 1 2 4 5 6 7 8 9 0

B 84 12 17 40 32 74 43 17 4 4

1 5 84 63 8 10 8 19 32 57 55

2 14 62 89 20 5 14 20 21 16 11

4 19 5 26 89 42 44 32 10 3 3

5 45 14 10 69 90 42 24 10 6 5

6 80 15 14 24 17 88 69 14 5 14

7 33 22 29 15 12 61 85 70 20 13

8 23 42 29 16 9 30 60 89 61 26

9 14 57 39 12 4 11 42 56 91 78

0 3 50 26 11 5 22 17 52 81 94

The discrimination probabilities violate constant self-dissimilarity
(e.g., digit 1 judged different from itself by 16%, but only by 6%
for digit 0). Symmetry is violated as well (e.g., digits 4 and 5
judged to be different in 58% when 4 presented first, but in only
31% when 4 presented second).
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Checking Regular Minimality/Maximality

This part of the morse data satisfies regular maximality in the
canonical form:

R> check.regular(morse.subspace, type = "percent.same")$check

[1] "regular maximality"

R> check.regular(morse.subspace, type = "percent.same")$in.canonical.form

[1] TRUE

The data set noRegMin (artificial data set included in the package)
satisfies neither regular minimality nor regular maximality:

R> check.regular(noRegMin, type = "reg.minimal")

regular minimality is violated: entry in row #1 and column #10

is minimal in row #1 but not in column #10

R> check.regular(noRegMin, type = "reg.maximal")

regular maximality is violated: entry in row #2 and column #6

is maximal in row #2 but not in column #6
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FS Analysis using Short Computation, I

The function fechner is the main function of the package and
provides the FS computations. For instance, the overall Fechnerian
distances using short computation (compute.all = FALSE) are:

R> f.scal.subspace.mo <- fechner(morse.subspace,

R+ format="percent.same",compute.all=FALSE,check.computation=FALSE)

R> f.scal.subspace.mo$overall.Fechnerian.distances

B 1 2 4 5 6 7 8 9 0

B 0.00 1.51 1.42 0.97 0.97 0.18 0.61 1.05 1.49 1.60

1 1.51 0.00 0.48 1.60 1.50 1.49 1.27 0.99 0.61 0.73

2 1.42 0.48 0.00 1.32 1.64 1.49 1.25 1.28 1.06 1.21

4 0.97 1.60 1.32 0.00 0.68 0.97 1.27 1.45 1.65 1.69

5 0.97 1.50 1.64 0.68 0.00 1.08 1.39 1.60 1.71 1.74

6 0.18 1.49 1.49 0.97 1.08 0.00 0.43 0.87 1.35 1.46

7 0.61 1.27 1.25 1.27 1.39 0.43 0.00 0.44 0.92 1.18

8 1.05 0.99 1.28 1.45 1.60 0.87 0.44 0.00 0.63 0.83

9 1.49 0.61 1.06 1.65 1.71 1.35 0.92 0.63 0.00 0.26

0 1.60 0.73 1.21 1.69 1.74 1.46 1.18 0.83 0.26 0.00



FS Analysis using Short Computation, II

The information provided using the short computation, an
overview:

R> attributes(f.scal.subspace.mo)

$names

[1] "points.of.subjective.equality" "canonical.representation"

[3] "overall.Fechnerian.distances" "geodesic.loops"

[5] "graph.lengths.of.geodesic.loops" "S.index"

$computation

[1] "short"

$class

[1] "fechner"



FS Analysis using Long Computation
An overview of the information computed under the long
computation (compute.all = TRUE), which additionally yields
intermediate results and also allows for a check of computations:

R> f.scal.subspace.long.mo <- fechner(morse.subspace,

R+ format="percent.same",compute.all=TRUE,check.computation=TRUE)

R> attributes(f.scal.subspace.long.mo)

$names

[1] "points.of.subjective.equality" "canonical.representation"

[3] "psychometric.increments.1" "psychometric.increments.2"

[5] "oriented.Fechnerian.distances.1" "overall.Fechnerian.distances.1"

[7] "oriented.Fechnerian.distances.2" "overall.Fechnerian.distances.2"

[9] "check" "geodesic.chains.1"

[11] "geodesic.loops.1" "graph.lengths.of.geodesic.chains.1"

[13] "graph.lengths.of.geodesic.loops.1" "geodesic.chains.2"

[15] "geodesic.loops.2" "graph.lengths.of.geodesic.chains.2"

[17] "graph.lengths.of.geodesic.loops.2" "S.index"

$computation

[1] "long"

$class

[1] "fechner"
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Plotting
Plotting the fechner object f.scal.morse (computed based on
the entire Morse code data set) gives scatterplots (for comparison
levels 2 and 4, respectively):

R> plot(f.scal.morse)
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R> plot(f.scal.morse, level = 4)
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Summarizing

The corresponding summary of the fechner object
f.scal.morse, including the Pearson correlation coefficient and
the C–index:

R> summary(f.scal.morse)

number of stimuli pairs used for comparison: 630

summary of corresponding S-index values:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.180 1.260 1.520 1.435 1.670 1.850

summary of corresponding Fechnerian distance G values:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.180 1.203 1.490 1.405 1.660 1.850

Pearson correlation: 0.9764753

C-index: 0.002925355

comparison level: 2
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Fechnerian Scaling in R

By contributing the package fechner in R we hope to have
established a basis for computational work in this field. Interactive
visualization and computational statistics approaches can be
utilized in post-Fechnerian analyses to make the results obtained
by Fechnerian scaling more explorable and interpretable.

The realization of Fechnerian scaling in R may also prove valuable
in applying current or conventional statistical methods to the
theory of Fechnerian scaling. For instance, the determination of
confidence regions (e.g., for overall Fechnerian distances) and
hypothesis testing (e.g., testing for RM) in Fechnerian scaling are
likely to be based on resampling methods. Such an endeavor would
involve extensive computer simulation, something R would be
ideally suited for.

The package fechner will have to be extended to incorporate such
approaches.
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