Model-based recursive partitioning for Bradley-Terry models

Florian Wickelmaier Carolin Strobl Achim Zeileis

2nd Workshop on Psychometric Computing February 25-26, 2010

Goal of model based partitioning

Motivation

- The preference scaling of a population of subjects may not be homogeneous.
- Different groups of subjects with certain characteristics may show different preference scalings.
- For each group, a separate Bradley-Terry (BT) model with different parameters might hold.
- The groups may be unknown a priori.

Goal

Identify groups of subjects with homogeneous model parameters.

Steps of BT model partitioning algorithm

- 1. Fit a BT model to the paired comparisons of all subjects in the current (sub-)sample, starting with the full sample.
- 2. Assess the stability of the BT model parameters with respect to each available covariate.
- 3. If there is significant instability, split the sample along the covariate with the strongest instability and use the cutpoint with the highest improvement of the model fit.
- 4. Repeat steps 1–3 recursively in the resulting subsamples until there are no more significant instabilities (or the subsample is too small).

Fitting the Bradley-Terry model

In a paired-comparison, the probabilities of choosing the first alternative (1), the second alternative (2), or of being undecided (3) are (Davidson, 1970)

$$p_{jj'1} = \frac{\pi_j}{\pi_j + \pi_{j'} + \nu \sqrt{\pi_j \pi_{j'}}}$$

$$p_{jj'2} = \frac{\pi_{j'}}{\pi_j + \pi_{j'} + \nu \sqrt{\pi_j \pi_{j'}}}$$

$$p_{jj'3} = \frac{\nu \sqrt{\pi_j \pi_{j'}}}{\pi_j + \pi_{j'} + \nu \sqrt{\pi_j \pi_{j'}}}$$

With $\theta = (\log(\pi_1), \ldots, \log(\pi_{k-1}), \log(\nu))^{\top}$, the model may be fitted using an auxiliary log-linear model (or a logit model, when there are no ties).

Attractiveness of Germany's Next Topmodels 2007

Method

- N = 192 stratified by gender and age, 48 in each subgroup
- Presented with photographs of the top six contestants
- Each participant did all $6 \cdot 5/2 = 15$ pairwise comparisons

Research question

Does perceived attractiveness of the contestants vary with gender and age, and with previous knowledge of the participants?

- q1 Do you recognize the women on the pictures?/Do you know the TV show Germany's Next Topmodel?
- q2 Did you watch Germany's Next Topmodel regularly?
- q3 Did you watch the final show of Germany's Next Topmodel?/Do you know who won Germany's Next Topmodel?

The top six contestants

Fiona

Mandy

Anja

Binary paired-comparison judgments

Which of these two women do you find more attractive?

Binary paired-comparison judgments

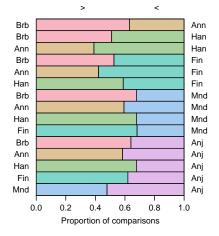
Which of these two women do you find more attractive?

The paircomp class

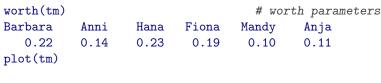
paircomp is designed for holding paired comparisons of k objects measured for n subjects.

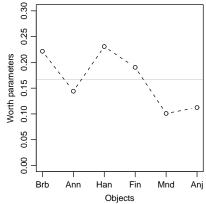
```
Topmodel2007$pref[1:5]
```

[1] {Brb > Ann, Brb > Han, Ann > Han, Brb > Fin, Ann < Fin...}
 [2] {Brb < Ann, Brb < Han, Ann < Han, Brb < Fin, Ann > Fin...}
 [3] {Brb < Ann, Brb < Han, Ann < Han, Brb < Fin, Ann < Fin...}
 [4] {Brb < Ann, Brb > Han, Ann > Han, Brb > Fin, Ann > Fin...}
 [5] {Brb < Ann, Brb < Han, Ann < Han, Brb < Fin, Ann > Fin...}


Under the hood:

Descriptive statistics


Aggregate judgments, N = 192 per pair

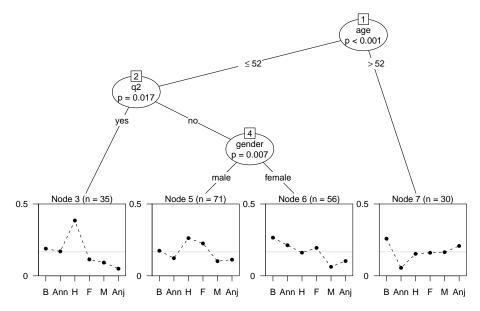

<pre>summary(Topmodel2007\$pref)</pre>								
			>	<				
Barbara	:	Anni	121	71				
Barbara	:	Hana	98	94				
Anni	:	Hana	75	117				
Barbara	:	Fiona	101	91				
Anni	:	Fiona	81	111				
Hana	:	Fiona	113	79				
Barbara	:	Mandy	130	62				
Anni	:	Mandy	114	78				
Hana	:	Mandy	130	62				
Fiona	:	Mandy	131	61				
Barbara	:	Anja	123	69				
Anni	:	Anja	112	80				
Hana	:	Anja	130	62				
Fiona	:	Anja	119	73				
Mandy	:	Anja	92	100				

plot(Topmodel2007\$pref)

Bradley-Terry model for the entire sample
 tm <- btReg.fit(Topmodel2007\$pref) # workhorse function</pre>

Partitioning the Bradley-Terry model

tmt <- bttree(preference ~ ., data=Topmodel2007, minsplit=5)</pre>


Test for structural change

sctest(tmt, node=1)

	gender	age	q1	q2	q3
statistic	17.088	32.357	12.632	19.839	6.759
p.value	0.022	0.001	0.128	0.007	0.745

Use age for splitting the sample, and fit model in the subsamples. Continue recursively.

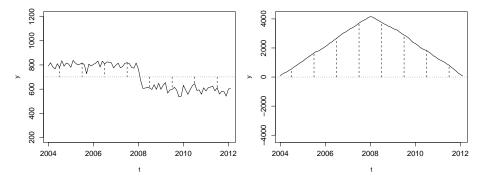
Partitioned Bradley-Terry model

Conclusions

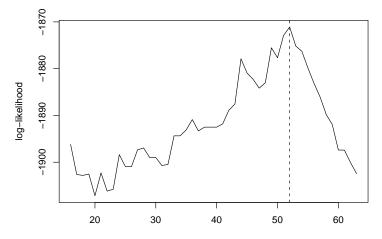
With model based recursive partitioning you can

- find groups of subjects with similar model parameters
- by means of partitioning the covariate space.

The advantages of this approach are that


- the groups need not be known
- combinations of relevant covariates are identified
- interactions between covariates are incorporated
- continuous covariates are discretized in an optimal, data-driven way for splitting

Thank you for your attention


http://CRAN.r-project.org/package=psychotree

Strobl, C., Wickelmaier, F., & Zeileis, A. (in press). Accounting for individual differences in Bradley-Terry models by means of recursive partitioning. *Journal of Educational and Behavioral Statistics*.

Structural change

Structural change

age