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Introduction

Rasch model for measuring latent traits

Model assumption: Item parameters estimates do not depend on

person sample

Violated in case of differential item functioning (DIF)

Several approaches to test for DIF:

LR tests, Wald tests

Rasch trees

Mixture models

Here: Two versions of the mixture model approach

Rasch Model

Probability for person i to solve item j :

P(Yij = yij |θi , βj) =
eyij(θi−βj)

1 + eθi−βj

yij : Response by person i to item j

θi : Ability of person i

βj : Difficulty of item j

ML Estimation

Factorization of the full likelihood on basis of the scores ri =
∑m

j=1 yij

L(θ,β) = f (y|θ,β)

= h(y|r ,θ,β)g(r |θ,β)

= h(y|r ,β)g(r |θ,β)

Joint ML: Joint estimation of β and θ is inconsistent

Marginal ML: Assume distribution for θ and integrate out

in g(r |θ,β)

Conditional ML: Assume g(r) = g(r |θ,β) as given or that it does

not depend on θ,β (but potentially other parameters). Hence, g(r)
is a nuisance term and only h(y |r ,β) needs to be maximized.



Mixture Models

Mixture models are a tool to model data with unobserved

heterogeneity caused by, e.g., (latent) groups

Mixture density =
∑

weight × component

Weights are a priori probabilities for the components

Components are densities or (regression) models

Mixtures of Rasch Models

Mixture of the full likelihoods by Rost (1990):

f (y |π,ψ,β) =
n∏

i=1

K∑

k=1

πkψri ,k h(yi |ri ,βk)

with ψri ,k = gk(ri)

Mixture of the conditional likelihoods:

f (y |π,β) =

n∏

i=1

K∑

k=1

πk h(yi |ri ,βk)

Parameter Estimation

EM algorithm by Dempster, Laird and Rubin (1977)

Group membership is seen as a missing value

Optimization is done iteratively by alternate estimation of group

membership (E-step) and component densities (M-step)

E-step:

p̂ik =
π̂k h(y i |ri , β̂k)∑K

g=1 π̂gh(y i |ri , β̂g)

M-step:

For each component separately

β̂k = argmax
βk

n∑

i=1

p̂ik log h(y i |ri , β̂k)

Number of Components

How can the number of components k be established?

A priori known number of groups in the data

LR test: Regularity conditions are not fulfilled

→ Distribution under H0 unknown

→ Bootstrap necessary

Information criteria: AIC, BIC, ICL



Simulation Design

10 items, 1800 people, equal group sizes

Latent groups in item and/or person parameters:

β1 = β2 β1 6= β2

θ1 = θ2

θ1 6= θ2
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B/C: Two Latent Classes 
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Person Parameters

A/B: θ1 = θ2
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C: θ1 ≠ θ2
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Criteria for Goodness of Fit

Number of components

Rand index:

Agreement between true and estimated partition

Mean residual sum of squares:

Agreement between true and estimated (item) parameter vector
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Latent Structure in Item and Person Parameters

(DIF + Ability Differences)
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Latent Structure in Item and Person Parameters

(DIF + Ability Differences)
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Summary and Outlook

Model suitable for detecting latent classes with DIF

Model also suitable when a latent structure in the

person parameters is present

AIC tends to overestimate the correct number of classes,

BIC and ICL work well

Clustering of the observations works well

Estimation of the item parameters in the components works

reasonably well

Comparison with Rost’s MRM to follow
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