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Introduction

Part I: Introduction

▸ R-Package prefmod

collection of utilities to �t a variety of paired comparison

models

▸ preference models based on paired comparisons

objective is to establish a preference scale for certain objects

� food, crimes, pain, teaching styles, portfolios, . . .

▸ paired comparisons

J objects are compared in pairs according to a speci�c

attribute

� tastes better, makes me put on more weight, . . .

we observe (J2) comparisons (responses)
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Model

core model in prefmod is the Bradley-Terry speci�cation

P {Yjk = 1∣πj, πk} = πj

πj + πk or P {Yjk = −1∣πj, πk} = πk
πj + πk

Yjk = 1 . . . object j preferred to k, Yjk = −1 . . . object k preferred to j

πj . . . location of object j on preference scale

independence model (Bradley-Terry): response is yjk

p(yjk) = c(
√
πj√
πk

)yjk

pattern model: response is y = {y12, y13, . . . , yjk, . . . , yJ−1,J}
p(y12, . . . , yJ−1,J) = c∏

j<k (
√
πj√
πk

)yjk
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Independence: LLBT (loglinear Bradley-Terry model)

we use the loglinear representation (Applied Statistics, 1998)

lnm(yjk) = µ(jk) + yjk(λj − λk)
design structure for 3 objects:

µ λ1 λ2 λ3
comparison decision counts const y12 y13 y23

(12) O1 n(1≻2) 1 1 -1 0
(12) O2 n(2≻1) 1 -1 1 0

(13) O1 n(1≻3) 2 1 0 -1
(13) O3 n(3≻1) 2 -1 0 1

(23) O2 n(2≻3) 3 0 1 -1
(23) O3 n(3≻2) 3 0 -1 1

factor for normalizing constants µ
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Pattern model

loglinear model (CSDA, 2002)

ln m(y12, . . . , yJ−1,J) = ηy = µ+ J∑
j=1λjxj = µ+

J∑
j=1λj

⎛⎝
J∑

ν=j+1yjν −
j−1∑
ν=1yνj

⎞⎠
design structure for 3 objects:

µ λ1 λ2 λ3
pattern y12 y13 y23 counts const x1 x2 x3

`1 1 1 1 n1 1 2 0 -2
`2 1 1 −1 n2 1 2 -2 0
`3 1 −1 1 n3 1 0 0 0
`4 1 −1 −1 n4 1 0 -2 2
`5 −1 1 1 n5 1 0 2 -2
`6 −1 1 −1 n6 1 0 0 0
`7 −1 −1 1 n7 1 -2 2 0
`8 −1 −1 −1 n8 1 -2 0 2

xj = #(Oj is preferred in `) - #(Oj not preferred in `)
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Extensions for subject and object e�ects

Preferenc
e

O1

O2

O3

O4

C2

C1

O3

O4

O1

O2

C1

C2

objectproperties objectproperties

subjecte�ects
subject e�ects: duplicate table for each covariate group s

object e�ects: λj = ∑q βCq xjq
bjq . . . covariate for characteristic Cq

βCq . . . e�ect of characteristic Cq
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Extensions: Overview

extensions for LLBT and pattern model● undecided (3(J2) di�erent patterns), position e�ects● subject covariates, object speci�c covariates

additional extensions for pattern models

we can give up the assumption of independent decisions● dependence parameters θ(jk)(jl) (interactions)
for pairs of comparisons with one object in common

and we can also deal with various other response formats● ranking data● rating (Likert) data (�rankings with ties�)● piling, multiple responses, . . .
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Derived paired comparisons:

Example: ranking with 3 objects

we transform rankings to paired comparisons

● number of possible patterns is 3! = 6 compared to 2(32) = 8● pattern model based on reduced number of di�erent patterns● using the LLBT leads to biased estimates for the λ's →
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The LLBT in prefmod

▸ user-friendly function (restricted functionality):
llbtPC.fit(obj, nitems, formel = ~1, elim = ~1, resptype = "paircomp",

obj.names = NULL, undec = FALSE)

▸ for more specialised models: generate a design matrix

use gnm() or glm() to �t the model
llbt.design(data, nitems = NULL, objnames = "", objcovs = NULL,

cat.scovs = NULL, num.scovs = NULL, casewise = FALSE, ...)

▸ calculate the π's (λ's) from the estimated model

llbt.worth(fitobj, outmat = "worth")

▸ plot the π's (λ's) from the llbt.worth() output
plotworth(worthmat, main = "Preferences", ylab = "Estimate",

psymb = NULL, pcol = NULL, ylim = range(worthmat))
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LLBT example: CEMS exchange program

students of the WU can study abroad visiting one of currently

17 CEMS universities

aim of the study:● preference orderings of students for di�erent locations● identify reasons for these preferences

data:● paired comparison responses for 6 selected CEMS (London,

Paris, Milan, Barcelona, St.Gall, Stockholm)● several subject covariates (e.g., gender, working status, lan-

guage abilities, etc.)● several object covariates (e.g., specialisation, region, etc.)
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LLBT example: CEMS exchange program

● generate object covariates (dummy coding):
> LAT <- c(0, 1, 1, 0, 1, 0)
> EC <- c(1, 0, 1, 0, 0, 0)
> MS <- c(0, 1, 0, 0, 1, 0)
> FS <- c(0, 0, 0, 1, 0, 1)

● make a data frame for object covariates, name objects
> OBJ <- data.frame(LAT, EC, MS, FS)
> cities <- c("LO", "PA", "MI", "SG", "BA", "ST")

● make a design matrix
> des.n1 <- llbt.design(cpc, 6, objcovs = OBJ, cat.scovs = "SEX",
+ objnames = cities)
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Example (cont'd)

● �t model using gnm()
> mod <- gnm(y ~ LAT + MS + FS + SEX:(LAT + MS + FS), eliminate = mu:SEX,
+ family = poisson, data = des.n1)

● model results
> mod
Call:

gnm(formula = y ~ LAT + MS + FS + SEX:(LAT + MS + FS), eliminate = mu:SEX,
family = poisson, data = des.n1)

Coefficients of interest:
LAT MS FS LAT:SEX2 MS:SEX2 FS:SEX2

-0.74972 0.02355 -1.00742 -0.29634 0.27508 0.16457

Deviance: 1322.009
Pearson chi-squared: 1203.450
Residual df: 54
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Example (cont'd)

● calculate the worth
> wmat <- llbt.worth(mod)
> wmat

SEX1 SEX2
LO 0.62868639 0.65230770
PA,BA 0.14712617 0.14629880
MI 0.14035778 0.08051178
SG,ST 0.08382965 0.12088172
attr(,"objtable")
LAT MS FS x

1 0 0 0 LO
2 1 0 0 MI
3 1 1 0 PA, BA
4 0 0 1 SG, ST

● plot the worth

> plotworth(wmat, ylab = "estimated worth", log = "y")
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Example (cont'd)
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The pattern model in prefmod

▸ user-friendly function (restricted functionality):
pattPC.fit(obj, nitems, formel = ~1, elim = ~1, obj.names = NULL,

undec = FALSE, ia = FALSE)▸ analogous for rankings (pattR.fit)

and ratings (pattL.fit)▸ calculate the π's (λ's) from the estimated model

patt.worth(obj, obj.names = NULL, outmat = "worth")

▸ plot the π's (λ's) from the patt.worth() output
plotworth(worthmat, main = "Preferences", ylab = "Estimate",

psymb = NULL, pcol = NULL, ylim = range(worthmat))▸ for more specialised models: generate a design matrix
patt.design(obj, nitems = NULL, objnames = "", resptype = "paircomp",

blnRevert = FALSE, cov.sel = "", blnIntcovs = FALSE)
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Part II: Model Extensions

● heterogeneity in paired comparisons (latent classes)

(Annals of Applied Statistics, 2010)

● missing observations

(under revision, 2011)

● multivariate responses in the LLBT:

multidimensional paired comparisons

repeated measurements

(being written)
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NPML

Extension 1: Heterogeneity in paired comparisons

● responses vary between respondents● measured covariates can be taken into account● other unmeasured or unmeasurable characteristics of the re-

spondents might a�ect the response

in practice mainly 2 situations:

● unknown or not available subject variables● very complex situations make model �t

untractable

Preferenc
e

O1

O2

O3

O4

O3

O4

O1

O2

unmeasuredsubjecte�ects
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Random e�ects model

introduce random e�ects for each respondent (pattern `)

we need J random e�ect components δj`s
the linear predictor is

η`s = ∑
j<j yjk;`s(λjs + δj`s − λks − δk`s)

location of preference parameter for item j will be shifted up or

down for each response pattern in each subject covariate group

the likelihood becomes

L = ∏̀
s

(∫ ∞
−∞ . . .∫ ∞

−∞ P (y`s∣δ`s) g(δ`s) dδ1`s dδ2`s . . . dδJ−1;`s)n`s
where g(δ`s) is the multivariate probability density function or

mixing distribution of the random e�ects vector.
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Nonparametric approach

alternative approach (NPML, Aitkin, 1996):
replace multivariate distribution by series of mass point compo-
nents with unknown probability and unknown location →
mass point approach is a mixture model, where multinomial
(�xed e�ects) model is replaced by mixture of multinomials

if number of components is known, say R, we get R vectors of
mass-points locations

δr = (δ1r, δ2r, . . . , δJ−1;r)
and unknown component probability qr

The likelihood now becomes

L = ∏̀
s

( R∑
r=1 qr P`sr(y`s∣δr))

n`s
where ∑̀P`sr = 1, ∀s, r
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Estimation

using the EM algorithm

view problem as missing data problem:
latent class membership indicator z`sr ∈ {0,1} for each `s combi-
nation

z`sr = 1 if `s ∈ r E(z`sr) = w`sr
w`sr are the posterior probabilities of class membership
z`sr is missing▸ E-step:
recalculates the w's given current parameter estimates for the
q's and λ's▸ M-step:
maximises the multinomial likelihood w.r.t. λ's and δ's
carried out through loglinear model with weights w`sr

Psychoco 2011 20



NPML

The NPML model in prefmod

pattnpml.fit(
formula, # formula for fixed effects
random = ~1, # formula for random effects
k = 1, # number of mass-points (classes)
design, # design matrix
tol = 0.5, # to control the EM-algorithm
startp = NULL,
EMmaxit = 500,
EMdev.change = 0.001,
pr.it = FALSE
)

pattnpml.fit() is a wrapper function for alldistPC()

which in turn is a modi�cation of alldist() from the npmlreg

package (Einbeck, Darnell, and Hinde, 2007)

modi�cation allows for multiple random e�ect terms

more �exibility in choosing starting values
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NPML example: Sources of Science information

Eurobarometer 55.2 May-June 2001 Question 5.

Here are some sources of information about scienti�c developments.
Please rank them from 1 to 6 in terms of their importance to you
(1 being the most important and 6 the least important)

a) Television .....
b) Radio .....
c) Newspapers and magazines .....
d) Scienti�c magazines .....
e) The internet .....
f) School/University .....

12216 complete rankings of the 6 objects: TV, Radio, . . .

subject covariates:

AGE (4 levels: 15-24, 25-39, 40-54 and 55+)

SEX (2 levels: male, female)
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Example: Model selection

● �nd �tting �xed e�ects model: AGE + SEX● �t AGE + SEX random e�ects model with increasing number

of mass points● each model was �tted 50 times with di�erent starting values● model with smalles BIC was selected (∗)
(a) without covariates (b) with AGE and SEX

No. of No. of No. of
mass para- para-

points r Deviance meters BIC Deviance meters BIC
1 21293 13 21406 17815 33 18100
2 12494 18 12650 10731 38 11060
3 10252 23 10451 9056 43 9428
4 9792 28 10035 8836 48 9252
5 9544 33 9830 8729 53 9187
6 9387 38 9716 8667 58 ∗ 9170
7 9302 43 9674 8636 63 9182
8 9277 48 9693 8623 68 9212
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Results
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Missing Observations

Extension 2: Missing observations in paired comparisons

missing observations can occur for several reasons:

by design, respondent doesn't know, is unwilling, fatigue, etc.

if NA occurs at random � easily handled in LLBT

since m(yjk) depend only on observed values

but we want to use pattern models for several reasons

how can we take account of incomplete response patterns?

● each di�erent missing pattern gives a di�erent design matrix

(smaller than design matrix for non-missing data)● likelihood is computed for each of these �di�erent� tables

�individual� contributions to the likelihood● total likelihood (which is then maximised)

is the product of all the �individual� contributions
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Data structure

observed patterns complete patterns NA patterns
y12 y13 y23 (12) (13) (23) (12) (13) (23)

block 1 [] 1 1 1 1 1 1 0 0 0
1 1 −1 1 1 −1 0 0 0
1 −1 1 1 −1 1 0 0 0
1 −1 −1 1 −1 −1 0 0 0−1 1 1 −1 1 1 0 0 0−1 1 −1 −1 1 −1 0 0 0−1 −1 1 −1 −1 1 0 0 0−1 −1 −1 −1 −1 −1 0 0 0

block 2: [23] 1 1 NA 1 1 1 0 0 1
1 1 −1 0 0 1

1 −1 NA 1 −1 1 0 0 1
1 −1 −1 0 0 1−1 1 NA −1 1 1 0 0 1−1 1 −1 0 0 1−1 −1 NA −1 −1 1 0 0 1−1 −1 −1 0 0 1

block 3 ⋮ ⋮ ⋮
● Pobs(1,1,NA) = Pcompl(1,1,1) +Pcompl(1,1,−1)

Psychoco 2011 26

Missing Observations

Modelling missing values

complete data is table with 22` cells
cell probability is P {Y = y,R = r; π,ψ}
NA model:

P {Y = y,R = r; π,ψ} = P {Y = y; π}P {R = r∣Y = y; ψ} = f(y)q(r∣y)
cell probabilities for incomplete (observed data):

P {y12, y13, y23; π,ψ} = f(y12, y13, y23; π) q(0,0,0 ∣ y12, y13, y23;ψ)
P {y12, y13,NA; π,ψ} = ∑y23f(y12, y13, y23; π) q(0,0,1 ∣ y12, y13, y23;ψ)
P {y12,NA, y23; π,ψ} = ∑y13f(y12, y13, y23; π) q(0,1,0 ∣ y12, y13, y23;ψ)⋮
this is a composite link approach (Thompson & Baker, 1981):

extending GLMs: µi = cih(γ) = ∑ cikh(ηk)
ci's are known functions (CL functions)

Psychoco 2011 27

Missing Observations

Missing data mechanisms (Rubin, 1976)

let y = (yobs, ymis) and Rjk be an NA indicator (if NA: Rjk = 1)

Missing completely at random (MCAR):

If the conditional distribution P {R = r ∣ Y = y; ψ} is independent

of Y , i.e. P {R = r ∣ Y = y; ψ} = P {R = r; ψ}.
Missing at random (MAR):

If the conditional distribution depends on the observed, but not

on the missing values, P {R = r ∣ Y = y; ψ} = P {R = r ∣ Yobs = yobs; ψ}.
Missing not at random (MNAR):

If the conditional distribution depends on both the observed and

the missing values,

P {R = r ∣ Y = y; ψ} = P {R = r ∣ Yobs = yobs, Ymis = ymis; ψ}.
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Estimation of the outcome model f(y)
total likelihood is product of likelihoods for each NA pattern

block [⋅]
L(λ;y) = L[ ] ⋅L[12]⋯L[12][13]⋯L[12...J]

individual contributions are:

L[ ] = ∏
y∈Y[ ]

P (y;π,ψ)ny = ∏
y∈Y[ ]

⎛⎝
exp{η(y12,y13,...,yJ−1,J)}∑y∈Y[ ] exp{ηy}

⎞⎠
ny

and, e.g.,

L[12] = ∏
y∈Y[12]

⎛⎝
exp{η(1,y13,...,yJ−1,J)} + exp{η(−1,y13,...,yJ−1,J)}∑y∈Y[ ] exp{ηy}

⎞⎠
ny
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Some nonresponse models: q(r ∣y)
▸ under MCAR assumption:

model 1: P {Rjk = rjk} = eαjkrjk/(1 + eαjk), rjk ∈ {0,1}
model 2: common α, i.e., αjk = α
model 3: reparameterise αjk with αj +αk▸ under MNAR assumption: (include dependence on y)

model 1: P {Rjk = rjk∣Yjk = yjk} = e(αjk+yjkjβjk)rjk/(1 + eαjk+yjkβjk)
model 2: common α and β

model 3: additionally reparameterise βjk with βj + βk
Estimation:

linear predictors of outcome model ηy are extended to ηy + ηr∣y
apart from that, the procedure remains the same as for the pure

outcome model
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The missing observations model in prefmod

some nonresponse models for missing observations are handled

using further arguments in the pattern model functions
pattPC.fit(obj, nitems, formel = ~1, elim = ~1, resptype = "paircomp",

obj.names = NULL, undec = FALSE, ia = FALSE, NItest = FALSE,
NI = FALSE, MIScommon = FALSE, MISmodel = "obj", MISalpha = NULL,
MISbeta = NULL, pr.it = FALSE)

NItest . . . separate estimation for complete and incomplete patterns
NI . . . large table (crossclassi�cation with NA patterns)
MIScommon . . . �ts a common parameter for NA indicators, i.e., α = αj = αk
MISalpha . . . speci�cation to �t parameters for NA indicators using αij or αi+αj
MISbeta . . . �ts parameters for MNAR model, analogous to MISalpha

same arguments available for pattR.fit() and pattL.fit()
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Missing values example: Attitudes towards foreigners

Survey at the Vienna University of Economics(Weber, 2010)

98 students rated four extreme statements about hypothetical consequences
of migration through a paired comparison experiment

1) crimRate Foreigners increase crime rates
2) position Foreigners take away training positions
3) socBurd Foreigners are a burden for the social welfare system
4) culture Foreigners threaten our culture

> MCAR <- pattPC.fit(immig, 4, undec = T)

> MNAR <- pattPC.fit(immig, 4, undec = T, MISalpha = c(T, T, T, T),
+ MISbeta = c(T, T, T, T))
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Example (cont'd)
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Extension 3: Multivariate responses

� repeated observations of paired comparisons over time

� cross-sectional comparisons according to di�erent attributes

formulation as pattern model straightforward

a response pattern is

{y121, . . . , y12T , . . . , yjk1, . . . yjkT , . . . , y(J−1)J1, . . . , y(J−1)JT }
however pattern model intractable:

e.g., 5 items at 3 time points results in 230 patterns

idea: combination of LLBT and pattern model assuming:

� independence between comparisons (LLBT)

� patterns within comparisons (time points)
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Multivariate LLBT

extending the LLBT we get

lnm(jk)(yjk1⋯yjkT ) = µ(jk) + T∑
t=1yjkt(λjt − λkt) +∑s<tyjksyjktζ(jk)(st)

for 2 time points and for a certain comparison (jk)
lnm(jk)(++) = µ(jk) + λj1 − λk1 + λj2 − λk2 + ζ(jk)
lnm(jk)(−+) = µ(jk) − λj1 + λk1 + λj2 − λk2 − ζ(jk)
lnm(jk)(+−) = µ(jk) + λj1 − λk1 − λj2 + λk2 − ζ(jk)
lnm(jk)(−−) = µ(jk) − λj1 + λk1 − λj2 + λk2 + ζ(jk)
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Within-comparison dependence

for 2 time points there are (J2) within-comparison dependencies

for T time points there are (T2) × (J2) such dependencies

interpretation of ζ(jk)(st)
time 2(1 ≻ 2) (2 ≻ 1)+ −

time 1 (1 ≻ 2) + m++ m+−(2 ≻ 1) − m−+ m−−

lnOR(jk) = ln
m++m−−
m+−m−+ = 4ζ(jk)

restrictions on ζ(jk)(st) allow for modelling the association struc-

ture
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Multivariate responses

Modelling change

specifying a design matrix W for the objects allows for a repa-

rameterisation re�ecting certain �change�-hypotheses

e.g., 3 objects 2 time points, δj = λj2 − λj1

W =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ11 λ21 λ31 δ1 δ2 δ3

λ11 1 0 0 0 0 0

λ21 0 1 0 0 0 0

λ31 0 0 1 0 0 0

λ12 1 0 0 1 0 0

λ22 0 1 0 0 1 0

λ32 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
other choices of W allow for di�erent hypotheses, e.g., δ1 = δ2
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Example: Psychacoustics

for details ask Florian ,
we �t a model with 8 objects and 5 timepoints
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Example (cont'd): association structure
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Example (cont'd): worth plots
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