මුව	Introduction		
	Part I: Introduction		
prefmod: news and extensions Reinhold Hatzinger & Regina Dittrich Institute for Statistics and Mathematics WU Vienna	 R-Package prefmod collection of utilities to fit a variety of paired comparison models preference models based on paired comparisons objective is to establish a preference scale for certain object – food, crimes, pain, teaching styles, portfolios, paired comparisons J objects are compared in pairs according to a specific attribute – tastes better, makes me put on more weight, we observe (^J₂) comparisons (responses) 		
Psychoco 2011 1	Psychoco 2011		
Psychoco 2011 1 Introduction	Psychoco 2011		
Psychoco 2011 1 Introduction Psychoco 2011	Psychoco 2011 Introduction Independence: LLBT (loglinear Bradley-Terry model)		
Psychoco 2011 1 Introduction P Model Core model in prefmod is the Bradley-Terry specification $P\{Y_{jk} = 1 \pi_j, \pi_k\} = \frac{\pi_j}{\pi_j + \pi_k}$ or $P\{Y_{jk} = -1 \pi_j, \pi_k\} = \frac{\pi_k}{\pi_j + \pi_k}$ $Y_{jk} = 1 \dots$ object j preferred to $k, Y_{jk} = -1 \dots$ object k preferred to j	Psychoco 2011 Introduction Independence: LLBT (loglinear Bradley-Terry model) we use the loglinear representation (Applied Statistics, 1998) $\ln m_{(y_{jk})} = \mu_{(jk)} + y_{jk}(\lambda_j - \lambda_k)$		
Psychoco 2011 Introduction Model Core model in prefmod is the Bradley-Terry specification $P\{Y_{jk} = 1 \pi_j, \pi_k\} = \frac{\pi_j}{\pi_j + \pi_k}$ or $P\{Y_{jk} = -1 \pi_j, \pi_k\} = \frac{\pi_k}{\pi_j + \pi_k}$ $Y_{jk} = 1 \dots$ object j preferred to $k, Y_{jk} = -1 \dots$ object k preferred to j $\pi_j \dots$ location of object j on preference scale	Psychoco 2011 Introduction Independence: LLBT (loglinear Bradley-Terry model) we use the loglinear representation (Applied Statistics, 1998) $\ln m_{(y_{jk})} = \mu_{(jk)} + y_{jk}(\lambda_j - \lambda_k)$ design structure for 3 objects:		

$$p(y_{jk}) = c\left(\frac{\sqrt{\pi_j}}{\sqrt{\pi_k}}\right)$$

Psychoco 2011

pattern model: response is $y = \{y_{12}, y_{13}, \dots, y_{jk}, \dots, y_{J-1,J}\}$

 $p(y_{12},\ldots,y_{J-1,J}) = c \prod_{j < k} \left(\frac{\sqrt{\pi_j}}{\sqrt{\pi_k}}\right)^{y_{jk}}$

3

(13)

(23) (23)

4

2

3

3

 $n_{(1>3)}$

n(3>1)

 $n_{(2>3)}$

n_(3>2)

 O_1 O_3

 O_2 O_3

factor for normalizing constants μ

-1

0

0 -1 1

0 1 1 -1

Introduction

Pattern model

loglinear model (CSDA, 2002)

 $\ln m(y_{12}, \dots, y_{J-1,J}) = \eta_y = \mu + \sum_{j=1}^J \lambda_j x_j = \mu + \sum_{j=1}^J \lambda_j \left(\sum_{\nu=j+1}^J y_{j\nu} - \sum_{\nu=1}^{j-1} y_{\nu j} \right)$

design structure for 3 objects:

					μ	λ_1	λ_2	λ_3
pattern	y ₁₂	y_{13}	y_{23}	counts	const	x_1	x_2	x_3
ℓ_1	1	1	1	n_1	1	2	0	-2
ℓ_2	1	1	$^{-1}$	n ₂	1	2	-2	0
ℓ_3	1	$^{-1}$	1	n ₃	1	0	0	0
ℓ_4	1	$^{-1}$	$^{-1}$	n_4	1	0	-2	2
ℓ_5	-1	1	1	n ₅	1	0	2	-2
ℓ_6	-1	1	-1	n_6	1	0	0	0
ℓ_7	-1	-1	1	n_7	1	-2	2	0
ℓ_8	-1	-1	-1	n_8	1	-2	0	2

 $x_i = \#(O_i \text{ is preferred in } \ell) - \#(O_i \text{ not preferred in } \ell)$

Psychoco 2011

Introduction

P

5

P

Extensions: Overview

extensions for LLBT and pattern model

- undecided $(3^{\binom{j}{2}})$ different patterns), position effects
- subject covariates, object specific covariates

additional extensions for pattern models

we can give up the assumption of independent decisions

• dependence parameters $\theta_{(ik)(il)}$ (interactions) for pairs of comparisons with one object in common

and we can also deal with various other response formats

- ranking data
- rating (Likert) data ("rankings with ties")
- piling, multiple responses,

Extensions for subject and object effects object obiect properties properties Preference subject effects subject effects: duplicate table for each covariate group sobject effects: $\lambda_i = \sum_{a} \beta_a^C x_{ia}$ b_{jq} ... covariate for characteristic C_q β_a^C ... effect of characteristic C_q Psychoco 2011 6 P Introduction

Derived paired comparisons:

Example: ranking with 3 objects we transform rankings to paired comparisons

Data				comparison		
R	G	В	Response	RG	RB	GB
1	2	3	R>G>B	1	1	1
1	3	2	R>B>G	1	1	-1
-	-	-	-	1	-1	1
2	3	1	B>R>G	1	-1	-1
2	1	3	G>R>B	-1	1	1
-	-	-	-	-1	1	-1
3	1	2	G>B>R	-1	-1	1
3	2	1	B>G>R	-1	-1	-1

- number of possible patterns is 3! = 6 compared to $2^{\binom{3}{2}} = 8$
- pattern model based on reduced number of different patterns

• using the LLBT leads to biased estimates for the λ 's \rightarrow

P

Introduction	₽	Introduction	A	
The LLBT in prefmod	LLBT example: CEMS exchange program			
<pre>user-friendly function (restricted functionality): llbtPC.fit(obj, nitems, formel = ~1, elim = ~1, resptype = "paircomy obj.names = NULL, undec = FALSE)</pre>	p",	students of the WU can study abroad visiting o 17 CEMS universities	one of current	
<pre>for more specialised models: generate a design matrix use gnm() or glm() to fit the model llbt.design(data, nitems = NULL, objnames = "", objcovs = NULL, cat.scovs = NULL, num.scovs = NULL, casewise = FALSE,)</pre>		aim of the study: • preference orderings of students for different • identify reasons for these preferences	locations	
• calculate the π 's (λ 's) from the estimated model		data:		
<pre>llbt.worth(fitobj, outmat = "worth")</pre>	 paired comparison responses for 6 selected C Paris, Milan, Barcelona, St.Gall, Stockholm) 	CEMS (Londor		
▶ plot the π 's (λ 's) from the llbt.worth() output plotworth(worthmat, main = "Preferences", ylab = "Estimate",		 several subject covariates (e.g., gender, work guage abilities, etc.) 	region etc.)	
Psychoco 2011	9	Psychoco 2011	1	
Introduction	Ð	Introduction	ą	
LLBT example: CEMS exchange program		Example (cont'd)		
<pre>• generate object covariates (dummy coding): > LAT <- c(0, 1, 1, 0, 1, 0) > EC <- c(1, 0, 1, 0, 0, 0) > MS <- c(0, 1, 0, 0, 1, 0) > ES <- c(0, 0, 0, 0, 1, 0)</pre>		<pre>• fit model using gnm() > mod <- gnm(y ~ LAT + MS + FS + SEX:(LAT + MS + FS), el + family = poisson, data = des.n1)</pre>	iminate = mu:SEX,	
7 15 <- 6(6, 6, 6, 1, 6, 1)		• model results		
 make a data frame for object covariates, name objects 		> mod Call:		
> OBJ <- data.frame(LAT, EC, MS, FS) > cities <- c("LO", "PA", "MI", "SG", "BA", "ST")		<pre>gnm(formula = y ~ LAT + MS + FS + SEX:(LAT + MS + FS), e family = poisson, data = des.n1)</pre>	liminate = mu:SEX	
		Coefficients of interest:	¥2	
 make a design matrix > des.n1 <- llbt.design(cpc, 6, obicovs = OBJ. cat.scovs = "SEX". 		-0.74972 0.02355 -1.00742 -0.29634 0.27508 0.164	.57	
+ objnames = cities)		Deviance: 1322.009 Pearson chi-squared: 1203.450 Residual df: 54		

Psychoco 2011

Extension 1: Heterogeneity in paired comparisons

- responses vary between respondents
- measured covariates can be taken into account
- other unmeasured or unmeasurable characteristics of the respondents might affect the response

in practice mainly 2 situations:

- unknown or not available subject variables
- very complex situations make model fit untractable

 O_2

NPML

₽

Random effects model

introduce random effects for each respondent (pattern $\ell)$ we need J random effect components $\delta_{j\ell s}$ the linear predictor is

$$\eta_{\ell s} = \sum_{j < j} y_{jk;\ell s} (\lambda_{js} + \delta_{j\ell s} - \lambda_{ks} - \delta_{k\ell s})$$

location of preference parameter for item j will be shifted up or down for each response pattern in each subject covariate group

the likelihood becomes

$$L = \prod_{\ell s} \left(\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} P(y_{\ell s} | \delta_{\ell s}) g(\delta_{\ell s}) \, d\delta_{1\ell s} \, d\delta_{2\ell s} \, \dots \, d\delta_{J-1;\ell s} \right)^{n_{\ell s}}$$

where $g(\delta_{\ell s})$ is the multivariate probability density function or mixing distribution of the random effects vector.

Psychoco 2011

18

NPML

Psychoco 2011

P

17

Nonparametric approach

alternative approach (NPML, Aitkin, 1996): replace multivariate distribution by series of mass point components with unknown probability and unknown location \rightarrow

mass point approach is a mixture model, where multinomial (fixed effects) model is replaced by mixture of multinomials

if number of components is known, say R, we get R vectors of mass-points locations

```
\delta_r = (\delta_{1r}, \delta_{2r}, \dots, \delta_{J-1;r})
and unknown component probability q_r
```

The likelihood now becomes

$$L = \prod_{\ell s} \left(\sum_{r=1}^{R} q_r P_{\ell s r}(\mathbf{y}_{\ell s} | \delta_{\mathbf{r}}) \right)^{n_{\ell s}} \quad \text{where } \sum_{\ell} P_{\ell s r} = 1, \quad \forall s, r$$

NPML

P

Estimation

using the EM algorithm

view problem as missing data problem:

latent class membership indicator $z_{\ell sr} \in \{0,1\}$ for each ℓs combination

 $z_{\ell sr} = 1$ if $\ell s \in r$ $E(z_{\ell sr}) = w_{\ell sr}$

 $w_{\ell sr}$ are the posterior probabilities of class membership $z_{\ell sr}$ is missing

E-step:

M-step:

maximises the multinomial likelihood w.r.t. λ 's and δ 's carried out through loglinear model with weights $w_{\ell sr}$

The NPML model in prefmod	NPML example: Sources of Science information
pattnpml.fit(
formula, # formula for fixed effects	
random = ~1, # formula for random effects	Eurobarometer 55.2 May-June 2001 Question 5.
design. # design matrix	Here are some sources of information about scientific developments.
tol = 0.5, # to control the EM-algorithm	Please rank them from 1 to 6 in terms of their importance to you
startp = NULL,	(1 being the most important and 6 the least important)
EMdev.change = 0.001.	a) Television
pr.it = FALSE	b) Radio
)	c) Newspapers and magazines
	d) Scientific magazines
= the set of the parameter function for all $d = D(t)$	f) School/University
pattnpmi.rit() is a wrapper function for alloistPC()	
which in turn is a modification of alldist() from the npmir	reg
package (Einbeck, Darnell, and Hinde, 2007)	12216 complete rankings of the 6 objects: TV, Radio,
modification allows for multiple random effect terms	subject covariates:
more flexibility in choosing starting values	AGE (4 levels: 15-24, 25-39, 40-54 and 55+)
	SEX (2 levels: male, female)
Psychoco 2011	
NPMI	
Example: Model selection	Results
find fitting fixed offerto and dely top a gru	
• find fitting fixed effects model: AGE + SEX	
	Der Male Class 1 Male Class 6 Male Class 6
 fit AGE + SEX random effects model with increasing number 	
 fit AGE + SEX random effects model with increasing numl of mass points 	
 fit AGE + SEX random effects model with increasing numl of mass points each model was fitted 50 times with different starting values 	
 fit AGE + SEX random effects model with increasing numl of mass points each model was fitted 50 times with different starting valu model with smalles BIC was selected (*) 	Ues
 fit AGE + SEX random effects model with increasing numl of mass points each model was fitted 50 times with different starting value model with smalles BIC was selected (*) 	Ues
 fit AGE + SEX random effects model with increasing numl of mass points each model was fitted 50 times with different starting value model with smalles BIC was selected (*) 	Ues
 fit AGE + SEX random effects model with increasing numl of mass points each model was fitted 50 times with different starting value model with smalles BIC was selected (*) 	Ues
 fit AGE + SEX random effects model with increasing numl of mass points each model was fitted 50 times with different starting value model with smalles BIC was selected (*) (a) without covariates (b) with AGE and SEX No. of No. of No. of para-para-para-para-para-para-para-para	Ues image: second sec
 fit AGE + SEX random effects model with increasing numl of mass points each model was fitted 50 times with different starting values model with smalles BIC was selected (*) (a) without covariates (b) with AGE and SEX No. of No. of para-para-points r Deviance meters BIC Deviance meters BIC 1 21293 13 21406 17815 33 18100	Ues Image: second sec
 fit AGE + SEX random effects model with increasing numl of mass points each model was fitted 50 times with different starting values model with smalles BIC was selected (*) (a) without covariates (b) with AGE and SEX No. of para-points r Deviance meters BIC Deviance meters BIC 1 21293 13 21406 17815 33 18100 2 12494 18 12650 10731 38 11060 	Ues Image: second sec
• fit AGE + SEX random effects model with increasing numl of mass points• each model was fitted 50 times with different starting value• model with smalles BIC was selected (*)(a) without covariates(b) with AGE and SEXNo. of massNo. of para-points rDeviance 	Ues
• fit AGE + SEX random effects model with increasing numl of mass points• each model was fitted 50 times with different starting valu• model with smalles BIC was selected (*)(a) without covariates(b) with AGE and SEXNo. of massNo. of para-points rDeviance netersNo. of para-121293132140621249418126503102522310451903588364892525954433983069544339830	Ues
• fit AGE + SEX random effects model with increasing numl of mass points • each model was fitted 50 times with different starting value. • model with smalles BIC was selected (*) (a) without covariates (b) with AGE and SEX No. of No. of mass para- points r Deviance 1 21293 13 21406 16 10731 3 10252 23 10451 9035 8836 4 9792 28 10035 5 9544 33 9716 8667 58 9170	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

23

Psychoco 2011

24

Missing Observations

Extension 2: Missing observations in paired comparisons	Data structure
	observed patterns complete patterns NA patterns
missing observations can occur for several reasons:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
by design, respondent doesn't know, is unwilling, fatigue, etc.	
	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
if NA occurs at random – easily handled in LLBT	1 -1 -1 1 -1 -1 0 0 0
since $m_{(y_{ik})}$ depend only on observed values	-1 1 1 -1 1 1 0 0 0
	-1 1 -1 -1 1 -1 0 0 0
but we want to use pattern models for several reasons	
	block 2: [23] 1 1 NA 1 1 1 0 0 1
how can we take account of incomplete response patterns?	1 1 -1 0 0 1
	1 -1 NA 1 -1 1 0 0 1
• each different missing pattern gives a different design matrix	
(smaller than design matrix for non-missing data)	-1 1 -1 1 -1 0 0 1
 likelihood is computed for each of these "different" tables 	-1 -1 NA -1 -1 1 0 0 1
"individual" contributions to the likelihood	-1 -1 -1 0 0 1
- total likelihood (which is then maximized)	block 3
• Lotal likelihood (which is then maximised)	-D(1 + 1 + 1) - D(1 + 1) + D(1 + 1)
Psychoco 2011 25	Psychoco 2011 26
-	-
Missing Observations	Missing Observations
Missing Observations P Modelling missing values	Missing Observations P Missing data mechanisms (Rubin, 1976)
Missing ObservationsPModelling missing valuescomplete data is table with $2^{2\ell}$ cellscell probability is $P\{Y = y, R = r; \pi, \psi\}$	Missing Observations Missing data mechanisms (Rubin, 1976) let $y = (y_{obs}, y_{mis})$ and R_{jk} be an NA indicator (if NA: $R_{jk} = 1$)
Missing ObservationsModelling missing valuescomplete data is table with $2^{2\ell}$ cellscell probability is $P\{Y = y, R = r; \pi, \psi\}$ NA model:	Missing Observations Missing data mechanisms (Rubin, 1976) let $y = (y_{obs}, y_{mis})$ and R_{jk} be an NA indicator (if NA: $R_{jk} = 1$) Missing completely at random (MCAR):
Missing Observations \P Modelling missing values complete data is table with $2^{2\ell}$ cells cell probability is $P\{Y = y, R = r; \pi, \psi\}$ NA model:	Missing Observations Missing data mechanisms (Rubin, 1976) let $y = (y_{obs}, y_{mis})$ and R_{jk} be an NA indicator (if NA: $R_{jk} = 1$) Missing completely at random (MCAR): If the conditional distribution $P\{R = r \mid Y = y; y_i\}$ is independent
Missing ObservationsPModelling missing valuescomplete data is table with $2^{2\ell}$ cells cell probability is $P\{Y = y, R = r; \pi, \psi\}$ NA model: $P\{Y = y, R = r; \pi, \psi\} = P\{Y = y; \pi\}P\{R = r Y = y; \psi\} = f(y)q(r y)$ cell probabilities for incomplete (observed data):	Missing ObservationsMissing data mechanisms (Rubin, 1976)let $y = (y_{obs}, y_{mis})$ and R_{jk} be an NA indicator (if NA: $R_{jk} = 1$)Missing completely at random (MCAR):If the conditional distribution $P\{R = r \mid Y = y; \psi\}$ is independentof Y , i.e. $P\{R = r \mid Y = y; \psi\} = P\{R = r; \psi\}$.
Missing Observations Modelling missing values complete data is table with $2^{2\ell}$ cells cell probability is $P\{Y = y, R = r; \pi, \psi\}$ NA model: $P\{Y = y, R = r; \pi, \psi\} = P\{Y = y; \pi\}P\{R = r Y = y; \psi\} = f(y)q(r y)$ cell probabilities for incomplete (observed data): $P(y = y, R = r; \pi, \psi) = f(y = r) + f(y) + f(y)$	Missing Observations Missing data mechanisms (Rubin, 1976) let $y = (y_{obs}, y_{mis})$ and R_{jk} be an NA indicator (if NA: $R_{jk} = 1$) Missing completely at random (MCAR): If the conditional distribution $P\{R = r \mid Y = y; \psi\}$ is independent of Y , i.e. $P\{R = r \mid Y = y; \psi\} = P\{R = r; \psi\}$. Missing at random (MAR):
Missing Observations Modelling missing values complete data is table with $2^{2\ell}$ cells cell probability is $P\{Y = y, R = r; \pi, \psi\}$ NA model: $P\{Y = y, R = r; \pi, \psi\} = P\{Y = y; \pi\}P\{R = r Y = y; \psi\} = f(y)q(r y)$ cell probabilities for incomplete (observed data): $P\{y_{12}, y_{13}, y_{23}; \pi, \psi\} = f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 0 y_{12}, y_{13}, y_{23}; \psi)$	Missing Observations Missing data mechanisms (Rubin, 1976) let $y = (y_{obs}, y_{mis})$ and R_{jk} be an NA indicator (if NA: $R_{jk} = 1$) Missing completely at random (MCAR): If the conditional distribution $P\{R = r \mid Y = y; \psi\}$ is independent of Y , i.e. $P\{R = r \mid Y = y; \psi\} = P\{R = r; \psi\}$. Missing at random (MAR): If the conditional distribution depends on the observed, but not
Missing Observations Modelling missing values complete data is table with $2^{2\ell}$ cells cell probability is $P\{Y = y, R = r; \pi, \psi\}$ NA model: $P\{Y = y, R = r; \pi, \psi\} = P\{Y = y; \pi\}P\{R = r Y = y; \psi\} = f(y)q(r y)$ cell probabilities for incomplete (observed data): $P\{y_{12}, y_{13}, y_{23}; \pi, \psi\} = f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 0 y_{12}, y_{13}, y_{23}; \psi)$ $P\{y_{12}, y_{13}, NA; \pi, \psi\} = \sum_{y_{23}} f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 1 y_{12}, y_{13}, y_{23}; \psi)$ $P\{y_{12}, NA, y_{23}; \pi, \psi\} = \sum_{y_{13}} f(y_{12}, y_{13}, y_{23}; \pi) q(0, 1, 0 y_{12}, y_{13}, y_{23}; \psi)$	Missing Observations Missing data mechanisms (Rubin, 1976) let $y = (y_{obs}, y_{mis})$ and R_{jk} be an NA indicator (if NA: $R_{jk} = 1$) Missing completely at random (MCAR): If the conditional distribution $P\{R = r \mid Y = y; \psi\}$ is independent of Y , i.e. $P\{R = r \mid Y = y; \psi\} = P\{R = r; \psi\}$. Missing at random (MAR): If the conditional distribution depends on the observed, but not on the missing values, $P\{R = r \mid Y = y; \psi\} = P\{R = r \mid Y_{obs} = y_{obs}; \psi\}$.
Missing Observations Modelling missing values complete data is table with $2^{2\ell}$ cells cell probability is $P\{Y = y, R = r; \pi, \psi\}$ NA model: $P\{Y = y, R = r; \pi, \psi\} = P\{Y = y; \pi\}P\{R = r Y = y; \psi\} = f(y)q(r y)$ cell probabilities for incomplete (observed data): $P\{y_{12}, y_{13}, y_{23}; \pi, \psi\} = f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 0 y_{12}, y_{13}, y_{23}; \psi)$ $P\{y_{12}, y_{13}, NA; \pi, \psi\} = \sum_{y_{23}} f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 1 y_{12}, y_{13}, y_{23}; \psi)$ $P\{y_{12}, NA, y_{23}; \pi, \psi\} = \sum_{y_{13}} f(y_{12}, y_{13}, y_{23}; \pi) q(0, 1, 0 y_{12}, y_{13}, y_{23}; \psi)$ \vdots	Missing Observations Missing data mechanisms (Rubin, 1976) let $y = (y_{obs}, y_{mis})$ and R_{jk} be an NA indicator (if NA: $R_{jk} = 1$) Missing completely at random (MCAR): If the conditional distribution $P\{R = r \mid Y = y; \psi\}$ is independent of Y , i.e. $P\{R = r \mid Y = y; \psi\} = P\{R = r; \psi\}$. Missing at random (MAR): If the conditional distribution depends on the observed, but not on the missing values, $P\{R = r \mid Y = y; \psi\} = P\{R = r \mid Y_{obs} = y_{obs}; \psi\}$.
Missing Observations Modelling missing values complete data is table with $2^{2\ell}$ cells cell probability is $P\{Y = y, R = r; \pi, \psi\}$ NA model: $P\{Y = y, R = r; \pi, \psi\} = P\{Y = y; \pi\}P\{R = r Y = y; \psi\} = f(y)q(r y)$ cell probabilities for incomplete (observed data): $P\{y_{12}, y_{13}, y_{23}; \pi, \psi\} = f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 0 y_{12}, y_{13}, y_{23}; \psi)$ $P\{y_{12}, y_{13}, NA; \pi, \psi\} = \sum_{y_{23}} f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 1 y_{12}, y_{13}, y_{23}; \psi)$ $P\{y_{12}, NA, y_{23}; \pi, \psi\} = \sum_{y_{13}} f(y_{12}, y_{13}, y_{23}; \pi) q(0, 1, 0 y_{12}, y_{13}, y_{23}; \psi)$ \vdots	Missing Observations Missing data mechanisms (Rubin, 1976) let $y = (y_{obs}, y_{mis})$ and R_{jk} be an NA indicator (if NA: $R_{jk} = 1$) Missing completely at random (MCAR): If the conditional distribution $P\{R = r \mid Y = y; \psi\}$ is independent of Y , i.e. $P\{R = r \mid Y = y; \psi\} = P\{R = r; \psi\}$. Missing at random (MAR): If the conditional distribution depends on the observed, but not on the missing values, $P\{R = r \mid Y = y; \psi\} = P\{R = r \mid Y_{obs} = y_{obs}; \psi\}$. Missing not at random (MNAR): If the conditional distribution depends on the observed, but not
Missing Observations Modelling missing values complete data is table with $2^{2\ell}$ cells cell probability is $P\{Y = y, R = r; \pi, \psi\}$ NA model: $P\{Y = y, R = r; \pi, \psi\} = P\{Y = y; \pi\}P\{R = r Y = y; \psi\} = f(y)q(r y)$ cell probabilities for incomplete (observed data): $P\{y_{12}, y_{13}, y_{23}; \pi, \psi\} = f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 0 y_{12}, y_{13}, y_{23}; \psi)$ $P\{y_{12}, y_{13}, \text{NA}; \pi, \psi\} = \sum_{y_{23}} f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 1 y_{12}, y_{13}, y_{23}; \psi)$ $P\{y_{12}, \text{NA}, y_{23}; \pi, \psi\} = \sum_{y_{13}} f(y_{12}, y_{13}, y_{23}; \pi) q(0, 1, 0 y_{12}, y_{13}, y_{23}; \psi)$ \vdots this is a composite link approach (Thompson & Baker, 1981):	Missing Observations Missing data mechanisms (Rubin, 1976) let $y = (y_{obs}, y_{mis})$ and R_{jk} be an NA indicator (if NA: $R_{jk} = 1$) Missing completely at random (MCAR): If the conditional distribution $P\{R = r \mid Y = y; \psi\}$ is independent of Y, i.e. $P\{R = r \mid Y = y; \psi\} = P\{R = r; \psi\}$. Missing at random (MAR): If the conditional distribution depends on the observed, but not on the missing values, $P\{R = r \mid Y = y; \psi\} = P\{R = r \mid Y_{obs} = y_{obs}; \psi\}$. Missing not at random (MNAR): If the conditional distribution depends on both the observed and
Missing Observations Modelling missing values complete data is table with $2^{2\ell}$ cells cell probability is $P\{Y = y, R = r; \pi, \psi\}$ NA model: $P\{Y = y, R = r; \pi, \psi\} = P\{Y = y; \pi\}P\{R = r Y = y; \psi\} = f(y)q(r y)$ cell probabilities for incomplete (observed data): $P\{y_{12}, y_{13}, y_{23}; \pi, \psi\} = f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 0 y_{12}, y_{13}, y_{23}; \psi)$ $P\{y_{12}, y_{13}, NA; \pi, \psi\} = \sum_{y_{23}} f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 1 y_{12}, y_{13}, y_{23}; \psi)$ $P\{y_{12}, NA, y_{23}; \pi, \psi\} = \sum_{y_{13}} f(y_{12}, y_{13}, y_{23}; \pi) q(0, 1, 0 y_{12}, y_{13}, y_{23}; \psi)$: this is a composite link approach (Thompson & Baker, 1981): extending GLMs: $\mu_i = c_i h(\gamma) = \sum c_{ik} h(\eta_k)$	Missing Observations Missing data mechanisms (Rubin, 1976) let $y = (y_{obs}, y_{mis})$ and R_{jk} be an NA indicator (if NA: $R_{jk} = 1$) Missing completely at random (MCAR): If the conditional distribution $P\{R = r \mid Y = y; \psi\}$ is independent of Y , i.e. $P\{R = r \mid Y = y; \psi\} = P\{R = r; \psi\}$. Missing at random (MAR): If the conditional distribution depends on the observed, but not on the missing values, $P\{R = r \mid Y = y; \psi\} = P\{R = r \mid Y_{obs} = y_{obs}; \psi\}$. Missing not at random (MNAR): If the conditional distribution depends on both the observed and the missing values,
Missing Observations Modelling missing values complete data is table with $2^{2\ell}$ cells cell probability is $P\{Y = y, R = r; \pi, \psi\}$ NA model: $P\{Y = y, R = r; \pi, \psi\} = P\{Y = y; \pi\}P\{R = r Y = y; \psi\} = f(y)q(r y)$ cell probabilities for incomplete (observed data): $P\{y_{12}, y_{13}, y_{23}; \pi, \psi\} = f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 0 y_{12}, y_{13}, y_{23}; \psi)$ $P\{y_{12}, y_{13}, NA; \pi, \psi\} = \sum_{y_{23}} f(y_{12}, y_{13}, y_{23}; \pi) q(0, 0, 1 y_{12}, y_{13}, y_{23}; \psi)$ $P\{y_{12}, NA, y_{23}; \pi, \psi\} = \sum_{y_{13}} f(y_{12}, y_{13}, y_{23}; \pi) q(0, 1, 0 y_{12}, y_{13}, y_{23}; \psi)$ \vdots this is a composite link approach (Thompson & Baker, 1981): extending GLMS: $\mu_i = c_i h(\gamma) = \sum c_{ik} h(\eta_k)$ c_i 's are known functions (CL functions)	Missing Observations Missing data mechanisms (Rubin, 1976) let $y = (y_{obs}, y_{mis})$ and R_{jk} be an NA indicator (if NA: $R_{jk} = 1$) Missing completely at random (MCAR): If the conditional distribution $P\{R = r \mid Y = y; \psi\}$ is independent of Y , i.e. $P\{R = r \mid Y = y; \psi\} = P\{R = r; \psi\}$. Missing at random (MAR): If the conditional distribution depends on the observed, but not on the missing values, $P\{R = r \mid Y = y; \psi\} = P\{R = r \mid Y_{obs} = y_{obs}; \psi\}$. Missing not at random (MNAR): If the conditional distribution depends on both the observed and the missing values, $P\{R = r \mid Y = y; \psi\} = P\{R = r \mid Y_{obs} = y_{obs}, Y_{mis} = y_{mis}; \psi\}$.

P

Missing Observations

29

P

Estimation of the outcome model f(y)

total likelihood is product of likelihoods for each NA pattern block $\left[\cdot\right]$

$$L(\lambda; y) = L_{[]} \cdot L_{[12]} \cdots L_{[12][13]} \cdots L_{[12...J]}$$

individual contributions are:

$$L_{[]} = \prod_{y \in Y_{[]}} P(y; \pi, \psi)^{n_y} = \prod_{y \in Y_{[]}} \left(\frac{\exp\{\eta_{(y_{12}, y_{13}, \dots, y_{J-1}, J)}\}}{\sum_{y \in Y_{[]}} \exp\{\eta_y\}} \right)^{n_y}$$

and, e.g.,

$$L_{[12]} = \prod_{y \in Y_{[12]}} \left(\frac{\exp\{\eta_{(1,y_{13},\dots,y_{J-1,J})}\} + \exp\{\eta_{(-1,y_{13},\dots,y_{J-1,J})}\}}{\sum_{y \in Y_{[.]}} \exp\{\eta_y\}} \right)^{n_2}$$

Psychoco 2011

Missing Observations

The missing observations model in prefmod

some nonresponse models for missing observations are handled using further arguments in the pattern model functions pattPC.fit(obj, nitems, formel = ~1, elim = ~1, resptype = "paircomp", obj.names = NULL, undec = FALSE, ia = FALSE, NItest = FALSE, NI = FALSE, MIScommon = FALSE, MISmodel = "obj", MISalpha = NULL,

MISbeta = NULL, pr.it = FALSE)

NItest ... separate estimation for complete and incomplete patterns NI ... large table (crossclassification with NA patterns) MIScommon ... fits a common parameter for NA indicators, i.e., $\alpha = \alpha_j = \alpha_k$ MISalpha ... specification to fit parameters for NA indicators using α_{ij} or $\alpha_i + \alpha_j$ MISbeta ... fits parameters for MNAR model, analogous to MISalpha

same arguments available for pattR.fit() and pattL.fit()

Missing Observations

Some nonresponse models: q(r|y)

• under MCAR assumption: model 1: $P\{R_{jk} = r_{jk}\} = e^{\alpha_{jk}r_{jk}}/(1 + e^{\alpha_{jk}}), r_{jk} \in \{0, 1\}$ model 2: common α , i.e., $\alpha_{jk} = \alpha$ model 3: reparameterise α_{jk} with $\alpha_j + \alpha_k$

• under MNAR assumption: (include dependence on y) model 1: $P\{R_{jk} = r_{jk}|Y_{jk} = y_{jk}\} = e^{(\alpha_{jk}+y_{jk}\beta_{jk})r_{jk}}/(1 + e^{\alpha_{jk}+y_{jk}\beta_{jk}})$ model 2: common α and β model 3: additionally reparameterise β_{jk} with $\beta_j + \beta_k$

Estimation:

linear predictors of outcome model η_y are extended to $\eta_y + \eta_{r|y}$ apart from that, the procedure remains the same as for the pure outcome model

```
Psychoco 2011
```

Missing Observations

P

30

GP

Missing values example: Attitudes towards foreigners

Survey at the Vienna University of Economics(Weber, 2010)

98 students rated four extreme statements about hypothetical consequences of migration through a paired comparison experiment

- 1) crimRate Foreigners increase crime rates
- 2) position Foreigners take away training positions
- 3) socBurd Foreigners are a burden for the social welfare system
- 4) culture Foreigners threaten our culture

> MCAR <- pattPC.fit(immig, 4, undec = T)</pre>

> MNAR <- pattPC.fit(immig, 4, undec = T, MISalpha = c(T, T, T, T), + MISbeta = c(T, T, T, T))

Multivariate responses

Ð

37

P

z-values

-2

-3

Modelling change

specifying a design matrix ${\boldsymbol W}$ for the objects allows for a reparameterisation reflecting certain "change"-hypotheses

e.g., 3 objects 2 time points, $\delta_j = \lambda_{j2} - \lambda_{j1}$

		λ_{11}	λ_{21}	λ_{31}	δ_1	δ_2	δ3
W =	λ_{11}	(1	0	0	0	0	0)
	λ_{21}	0	1	0	0	0	0
	λ_{31}	0	0	1	0	0	0
	λ_{12}	1	0	0	1	0	0
	λ_{22}	0	1	0	0	1	0
	λ_{32}	0	0	1	0	0	1)

Example (cont'd): association structure

mo

st wst

Application: Perceptual evaluation of multichannel sound

Multivariate responses

Multivariate responses

Example: Psychacoustics

(Choisel & Wickelmaier, 2006, JAES)

Example (cont'd): worth plots

P

Psychoco 2011

time points

13 23 14 24 34 15 25 35 45

12

Multivariate responses

P

Some References

- **Aitkin**, **M**. (1996). A general maximum likelihood analysis of overdispersion in generalized linear models. *Statistics and Computing*, 6:251–262.
- Bradley, R. and Terry, M. (1952). Rank Analysis of Incomplete Block Designs. I. The Method of Paired Comparisons. *Biometrika*, 39:324–345.
- **Choisel, S. and Wickelmaier, F.** (2007). Evaluation of multichannel reproduced sound: Scaling auditory attributes underlying listener preference. *The Journal of the Acoustical Society of America*, 121:388.
- Dittrich, R., Hatzinger, R., and Katzenbeisser, W. (1998). Modelling the effect of subject-specific covariates in paired comparison studies with an application to university rankings. *Applied Statistics*, 47:511-525.
- Dittrich, R., Hatzinger, R., and Katzenbeisser, W. (2002). Modelling dependencies in paired comparison experiments. *Computational Statistics and Data Analysis*, 40:39–57.
- **Francis**, **B.**, **Dittrich**, **R.**, **and Hatzinger**, **R**. (2010). Modeling heterogeneity in ranked responses by nonparametric maximum likelihood: How do Europeans get their scientific knowledge? *The Annals of Applied Statistics*, 4(4):2181–2202.
- Thompson, R. and Baker, R. (1981). Composite link functions in generalized linear models. *Applied Statistics*, 30:125–131.

Psychoco 2011

41