

Pattern model

loglinear model (CSDA, 2002)

$$
\ln m\left(y_{12}, \ldots, y_{J-1, J}\right)=\eta_{y}=\mu+\sum_{j=1}^{J} \lambda_{j} x_{j}=\mu+\sum_{j=1}^{J} \lambda_{j}\left(\sum_{\nu=j+1}^{J} y_{j \nu}-\sum_{\nu=1}^{j-1} y_{\nu j}\right)
$$

design structure for 3 objects:

| pattern |
| :--- |y_{12}| | y_{13} | y_{23} | | counts | μ | λ_{1} | λ_{2} |
| :--- | ---: | ---: | :---: | ---: | ---: | ---: | ---: |λ_{3}.

$$
x_{j}=\#\left(O_{j} \text { is preferred in } \ell\right)-\#\left(O_{j} \text { not preferred in } \ell\right)
$$

Extensions: Overview

extensions for LLBT and pattern model

- undecided $\left(3^{(} \begin{array}{l}J \\ 2\end{array}\right)$ different patterns), position effects
- subject covariates, object specific covariates
additional extensions for pattern models
we can give up the assumption of independent decisions
- dependence parameters $\theta_{(j k)(j l)}$ (interactions)
for pairs of comparisons with one object in common
and we can also deal with various other response formats
- ranking data
- rating (Likert) data ("rankings with ties")
- piling, multiple responses, ...

Extensions for subject and object effects

subject effects: duplicate table for each covariate group s object effects: $\lambda_{j}=\sum_{q} \beta_{q}^{C} x_{j q}$

$$
b_{j q} \ldots \text { covariate for characteristic } C_{q}
$$

$$
\beta_{q}^{C} \ldots \text { effect of characteristic } C_{q}
$$

Derived paired comparisons:

Example: ranking with 3 objects
we transform rankings to paired comparisons

Data				comparison		
R	G	B	Response	RG	RB	GB
1	2	3	$\mathrm{R}>\mathrm{G}>\mathrm{B}$	1	1	1
1	3	2	$\mathrm{R}>\mathrm{B}>\mathrm{G}$	1	1	-1
-	-	-	-	1	-1	1
2	3	1	$\mathrm{~B}>\mathrm{R}>\mathrm{G}$	1	-1	-1
2	1	3	$\mathrm{G}>\mathrm{R}>\mathrm{B}$	-1	1	1
-	-	-	-	-1	1	-1
3	1	2	$\mathrm{G}>\mathrm{B}>\mathrm{R}$	-1	-1	1
3	2	1	$\mathrm{~B}>\mathrm{G}>\mathrm{R}$	-1	-1	-1

- number of possible patterns is $3!=6$ compared to $2^{\left(\frac{3}{2}\right)}=8$
- pattern model based on reduced number of different patterns
- using the LLBT leads to biased estimates for the λ 's

The LLBT in prefmod

- user-friendly function (restricted functionality):
llbtPC.fit(obj, nitems, formel $={ }^{\sim} 1$, elim $=\sim 1$, resptype $=$ "paircomp", obj.names $=$ NULL, undec $=$ FALSE
- for more specialised models: generate a design matrix use gnm() or glm() to fit the model
llbt.design(data, nitems $=$ NULL, objnames $=$ "", objcovs $=$ NULL, cat.scovs $=$ NULL, num.scovs $=$ NULL, casewise $=$ FALSE,...)
- calculate the π 's (λ^{\prime} 's) from the estimated model
llbt.worth(fitobj, outmat $=$ "worth")
- plot the π 's (λ^{\prime} s) from the llbt.worth() output plotworth(worthmat, main = "Preferences", ylab = "Estimate", psymb = NULL, pcol = NULL, ylim = range(worthmat))

LLBT example: CEMS exchange program

students of the WU can study abroad visiting one of currently 17 CEMS universities
aim of the study:

- preference orderings of students for different locations
- identify reasons for these preferences
data:
- paired comparison responses for 6 selected CEMS (London,

Paris, Milan, Barcelona, St.Gall, Stockholm)

- several subject covariates (e.g., gender, working status, Ianguage abilities, etc.)
- several object covariates (e.g., specialisation, region, etc.)

LLBT example: CEMS exchange program

- generate object covariates (dummy coding):
> LAT <- c(0, 1, 1, 0, 1, 0)
$>E C<-c(1,0,1,0,0,0)$
$>$ MS <- c $(0,1,0,0,1,0)$
$>\mathrm{FS}<-\mathrm{c}(0,0,0,1,0,1)$
- make a data frame for object covariates, name objects
> OBJ <- data.frame(LAT, EC, MS, FS)
> cities <- c("LO", "PA", "MI", "SG", "BA", "ST")
- make a design matrix
> des.n1 <- llbt.design(cpc, 6, objcovs = OBJ, cat.scovs = "SEX" $+\quad$ objnames $=$ cities

Example (cont'd)

- fit model using gnm()
mod <- gnm(y ~ LAT + MS + FS + SEX: (LAT + MS + FS $)$, eliminate $=$ mu:SEX,
$+\quad$ family $=$ poisson, data $=\operatorname{des} . n 1$)
- model results
$>$ mod
Call:
gnm(formula $=\mathrm{y}$ ~ LAT + MS + FS + SEX: (LAT + MS + FS), eliminate $=$ mu:SEX, family $=$ poisson, data $=$ des.n1)

Coefficients of interest,
LAT MS FS LAT:SEX2 MS:SEX2 FS:SEX2

Deviance: 1322.009
Pearson chi-squared: 1203.450
$\begin{array}{ll}\text { Pearson chi-squared: } \\ \text { Residual df: } & 54\end{array}$

NPML Qp	NPML ©p
Extension 1: Heterogeneity in paired comparisons - responses vary between respondents - measured covariates can be taken into account - other unmeasured or unmeasurable characteristics of the respondents might affect the response in practice mainly 2 situations: - unknown or not available subject variables - very complex situations make model fit untractable	Random effects model introduce random effects for each respondent (pattern ℓ) we need J random effect components $\delta_{j \ell s}$ the linear predictor is $\eta_{\ell s}=\sum_{j<j} y_{j k ; \ell s}\left(\lambda_{j s}+\delta_{j \ell s}-\lambda_{k s}-\delta_{k \ell s}\right)$ location of preference parameter for item j will be shifted up or down for each response pattern in each subject covariate group the likelihood becomes $L=\prod_{\ell s}\left(\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} P\left(y_{\ell s} \mid \delta_{\ell s}\right) g\left(\delta_{\ell s}\right) d \delta_{1 \ell s} d \delta_{2 \ell s} \ldots d \delta_{J-1 ; \ell s}\right)^{n_{\ell s}}$ where $g\left(\delta_{\ell s}\right)$ is the multivariate probability density function or mixing distribution of the random effects vector.
Psychoco 2011 17	Psychoco 2011 18
NPML Qp	NPML AP
Nonparametric approach alternative approach (NPML, Aitkin, 1996): replace multivariate distribution by series of mass point components with unknown probability and unknown location mass point approach is a mixture model, where multinomial (fixed effects) model is replaced by mixture of multinomials if number of components is known, say R, we get R vectors of mass-points locations $\delta_{r}=\left(\delta_{1 r}, \delta_{2 r}, \ldots, \delta_{J-1 ; r}\right)$ and unknown component probability q_{r} The likelihood now becomes $L=\prod_{\ell s}\left(\sum_{r=1}^{R} q_{r} P_{\ell s r}\left(\mathbf{y}_{\ell s} \mid \delta_{\mathbf{r}}\right)\right)^{n_{\ell s}} \quad \text { where } \sum_{\ell} P_{\ell s r}=1, \quad \forall s, r$	Estimation using the EM algorithm view problem as missing data problem: latent class membership indicator $z_{\ell s r} \in\{0,1\}$ for each ℓs combination $z_{\ell s r}=1 \quad$ if $\quad \ell s \in r \quad E\left(z_{\ell s r}\right)=w_{\ell s r}$ $w_{\ell s r}$ are the posterior probabilities of class membership $z_{\ell s r}$ is missing E-step: recalculates the w 's given current parameter estimates for the q 's and λ 's M-step: maximises the multinomial likelihood w.r.t. λ 's and δ 's carried out through loglinear model with weights $w_{\ell s r}$
Psychoco 2011 19	Psychoco 2011 20

Extension 2: Missing observations in paired comparisons

missing observations can occur for several reasons:
by design, respondent doesn't know, is unwilling, fatigue, etc
if NA occurs at random - easily handled in LLBT since $m_{\left(y_{j k}\right)}$ depend only on observed values
but we want to use pattern models for several reasons
how can we take account of incomplete response patterns?

- each different missing pattern gives a different design matrix (smaller than design matrix for non-missing data)
- likelihood is computed for each of these "different" tables "individual" contributions to the likelihood
- total likelihood (which is then maximised)
is the product of all the "individual" contributions

Missing Observations

Modelling missing values

complete data is table with $2^{2 \ell}$ cells
cell probability is $P\{Y=y, R=r ; \pi, \psi\}$
NA model:

$$
P\{Y=y, R=r ; \pi, \psi\}=P\{Y=y ; \pi\} P\{R=r \mid Y=y ; \psi\}=f(y) q(r \mid y)
$$

cell probabilities for incomplete (observed data):
$P\left\{y_{12}, y_{13}, y_{23} ; \pi, \psi\right\}=f\left(y_{12}, y_{13}, y_{23} ; \pi\right) q\left(0,0,0 \mid y_{12}, y_{13}, y_{23} ; \psi\right)$
$P\left\{y_{12}, y_{13}, \mathrm{NA} ; \pi, \psi\right\}=\sum_{y_{23}} f\left(y_{12}, y_{13}, y_{23} ; \pi\right) q\left(0,0,1 \mid y_{12}, y_{13}, y_{23} ; \psi\right)$
$P\left\{y_{12}\right.$, NA, $\left.y_{23} ; \pi, \psi\right\}=\sum_{y_{13}} f\left(y_{12}, y_{13}, y_{23} ; \pi\right) q\left(0,1,0 \mid y_{12}, y_{13}, y_{23} ; \psi\right)$
this is a composite link approach (Thompson \& Baker, 1981): extending GLMs: $\mu_{i}=c_{i} h(\gamma)=\sum c_{i k} h\left(\eta_{k}\right)$ c_{i} 's are known functions (CL functions)

Data structure

Observed patterns		complete patterns				NA patterns			
	y_{12}	y_{13}	y_{23}	(12)	(13)	(23)	(12)	(13)	(23)
block 1 []	1	1	1	1	1	1	0	0	0
	1	1	-1	1	1	-1	0	0	0
	1	-1	1	1	-1	1	0	0	0
	1	-1	-1	1	-1	-1	0	0	0
	-1	1	1	-1	1	1	0	0	0
	-1	1	-1	-1	1	-1	0	0	0
	-1	-1	1	-1	-1	1	0	0	0
	-1	-1	-1	-1	-1	-1	0	0	0
block 2: [23]	1	1	NA	1	1	1	0	0	1
				1	1	-1	0	0	1
	1	-1	NA	1	-1	1	0	0	1
				1	-1	-1	0	0	1
	-1	1	NA	-1	1	1	0	0	1
				-1	1	-1	0	0	1
	-1	-1	NA	-1	-1	1	0	0	1
				-1	-1	-1	0	0	1
block 3		\vdots			\vdots		\vdots		

- $P_{\text {obs }}(1,1$, NA $)=P_{\text {compl }}(1,1,1)+P_{\text {compl }}(1,1,-1)$

Psychoco 2011 26

Missing Observations

Missing data mechanisms (Rubin, 1976)

let $y=\left(y_{o b s}, y_{m i s}\right)$ and $R_{j k}$ be an NA indicator (if NA: $R_{j k}=1$)

Missing completely at random (MCAR):
If the conditional distribution $P\{R=r \mid Y=y ; \psi\}$ is independent of Y, i.e. $P\{R=r \mid Y=y ; \psi\}=P\{R=r ; \psi\}$.

Missing at random (MAR):
If the conditional distribution depends on the observed, but not on the missing values, $P\{R=r \mid Y=y ; \psi\}=P\left\{R=r \mid Y_{o b s}=y_{o b s} ; \psi\right\}$.

Missing not at random (MNAR):
If the conditional distribution depends on both the observed and the missing values,
$P\{R=r \mid Y=y ; \psi\}=P\left\{R=r \mid Y_{o b s}=y_{o b s}, Y_{m i s}=y_{m i s} ; \psi\right\}$.

Estimation of the outcome model $f(y)$

total likelihood is product of likelihoods for each NA pattern block [.]

$$
L(\lambda ; y)=L_{[]} \cdot L_{[12]} \cdots L_{[12][13]} \cdots L_{[12 \ldots J]}
$$

individual contributions are:

$$
L_{[]}=\prod_{y \in Y_{[]}} P(y ; \pi, \psi)^{n_{y}}=\prod_{y \in Y_{[]}}\left(\frac{\exp \left\{\eta_{\left(y_{12}, y_{13}, \ldots, y_{J-1, J}\right)}\right\}}{\sum_{y \in Y_{[]}} \exp \left\{\eta_{y}\right\}}\right)^{n_{y}}
$$

and, e.g.,

$$
L_{[12]}=\prod_{y \in Y_{[12]}}\left(\frac{\exp \left\{\eta_{\left(1, y_{13}, \ldots, y_{J-1, J}\right)}\right\}+\exp \left\{\eta_{\left(-1, y_{13}, \ldots, y_{J-1, J}\right)}\right\}}{\sum_{y \in Y_{[]}} \exp \left\{\eta_{y}\right\}}\right)^{n_{y}}
$$

The missing observations model in prefmod

some nonresponse models for missing observations are handled using further arguments in the pattern model functions

$$
\text { pattPC.fit(obj, nitems, formel }=\sim_{1} \text {, elim }=\sim 1 \text {, resptype }=\text { "paircomp", }
$$

obj.names $=$ NULL, undec $=$ FALSE, ia $=$ FALSE, NItest $=$ FALSE,
NI $=$ FALSE, MIScommon $=$ FALSE, MISmodel $=$ "obj", MISalpha $=$ NULL
MISbeta $=$ NULL, pr.it $=$ FALSE

NItest . . . separate estimation for complete and incomplete patterns NI ...large table (crossclassification with NA patterns)
MIScommon . . fits a common parameter for NA indicators, i.e., $\alpha=\alpha_{j}=\alpha_{k}$ MISalpha \ldots specification to fit parameters for NA indicators using $\alpha_{i j}$ or $\alpha_{i}+\alpha_{j}$ MISbeta . . . fits parameters for MNAR model, analogous to MISalpha
same arguments available for pattR.fit() and pattL.fit()

Some nonresponse models: $q(r \mid y)$

- under MCAR assumption:
model 1: $P\left\{R_{j k}=r_{j k}\right\}=e^{\alpha_{j k} r_{j k}} /\left(1+e^{\alpha_{j k}}\right), r_{j k} \in\{0,1\}$
model 2: common α, i.e., $\alpha_{j k}=\alpha$
model 3: reparameterise $\alpha_{j k}$ with $\alpha_{j}+\alpha_{k}$
- under MNAR assumption: (include dependence on y) model 1: $P\left\{R_{j k}=r_{j k} \mid Y_{j k}=y_{j k}\right\}=e^{\left(\alpha_{j k}+y_{j k j} \beta_{j k}\right) r_{j k}} /\left(1+e^{\alpha_{j k}+y_{j k} \beta_{j k}}\right)$ model 2: common α and β
model 3: additionally reparameterise $\beta_{j k}$ with $\beta_{j}+\beta_{k}$

Estimation:

linear predictors of outcome model η_{y} are extended to $\eta_{y}+\eta_{r \mid y}$ apart from that, the procedure remains the same as for the pure outcome model

Psychoco 2011 _ 30

Missing Observations

Survey at the Vienna University of Economics(Weber, 2010

98 students rated four extreme statements about hypothetical consequences of migration through a paired comparison experiment

1) crimRate Foreigners increase crime rates
2) socBurd Foreigners are a burden for the social welfare system
3) culture Foreigners threaten our culture

[^0]

Modelling change

specifying a design matrix \boldsymbol{W} for the objects allows for a reparameterisation reflecting certain "change"-hypotheses
e.g., 3 objects 2 time points, $\delta_{j}=\lambda_{j 2}-\lambda_{j 1}$

$\boldsymbol{W}=$| λ_{11} |
| :---: |
| λ_{21} |
| λ_{31} |
| λ_{12} |
| λ_{22} |
| λ_{32} |\(\left(\begin{array}{cccccc}\lambda_{11} \& \lambda_{21} \& \lambda_{31} \& \delta_{1} \& \delta_{2} \& \delta_{3}

1 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 0 \& 0 \& 0

1 \& 0 \& 0 \& 1 \& 0 \& 0

0 \& 1 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 1 \& 0 \& 0 \& 1\end{array}\right)\)
other choices of \boldsymbol{W} allow for different hypotheses, e.g., $\delta_{1}=\delta_{2}$
Multivariate responses

Example (cont'd): association structure

Some Reference

Aitkin, M. (1996). A general maximum likelihood analysis of overdispersio in generalized linear models. Statistics and Computing, 6:251-262.

Bradley, R. and Terry, M. (1952). Rank Analysis of Incomplete Block Designs. I. The Method of Paired Comparisons. Biometrika, 39:324-345.
Choisel, S. and Wickelmaier, F. (2007). Evaluation of multichannel reproduced sound: Scaling auditory attributes underlying listener preference. The Journal of the Acoustical Society of America, 121:388

Dittrich, R., Hatzinger, R., and Katzenbeisser, W. (1998). Modelling the effect of subject-specific covariates in paired comparison studie with an application to university rankings. Applied Statistics, 47:511-525.
Dittrich, R., Hatzinger, R., and Katzenbeisser, W. (2002). Modelling dependencies in paired comparison experiments. Computational Statistics and Data Analysis, 40:39-57.

Francis, B., Dittrich, R., and Hatzinger, R. (2010). Modeling heterogeneity in ranked responses by nonparametric maximum likelihood: How do Europeans get their scientific knowledge? The Annals of Applied Statistics 4(4):2181-2202.

Thompson, R. and Baker, R. (1981). Composite link functions in generalized linear models. Applied Statistics, 30:125-131.

[^0]: > MCAR <- pattPC.fit(immig, 4, undec = T)
 > MNAR <- pattPC.fit(immig, 4, undec $=T$, MISalpha $=c(T, T, T, T)$,
 $+\quad$ MISbeta $=c(T, T, T, T))$

