The difR package

A toolbox for the identification of dichotomous differential item functioning

David Magis

University of Liège and K.U. Leuven, Belgium david.magis@ulg.ac.be

Outline

- DIF (in 5 minutes)
- DIF methods (in 2 minutes)

Outline

• DIF (in 5 minutes)

Outline

- DIF (in 5 minutes)
- DIF methods (in 2 minutes)
- The difR package (in 5 minutes)

Outline

- DIF (in 5 minutes)
- DIF methods (in 2 minutes)
- The *difR* package (in 5 minutes)
- Application (until Florian's signal or lunch time ...)

Outline

- DIF
- DIF methods
- The difR package
- Application

Outline

- DIF
- DIF methods
- The *difR* package
- Application

DIF

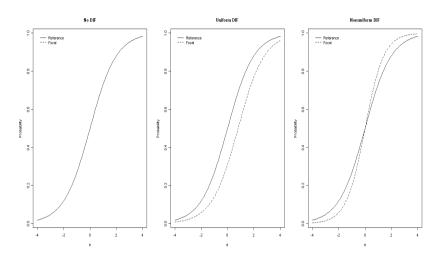
- Framework:
 - One test with dichotomous items
 - Two (or more) groups
 - One reference group, one (or more) focal group(s)
 - Question of interest: are the items functioning similarly in all groups?

DIF (2)

- Item is said to have differential functioning (to be DIF) if examinees from different groups, but with the same ability level, have different probabilities of answering the item correctly
- Goals of DIF research:
 - To develop methods to detect DIF
 - To identify and remove DIF items

DIF (4)

- IRT vs non-IRT:
 - Early first methods rely on statistical aspects (Mantel-Haenszel, logistic regression, SIBTEST...) and don't require fitting IRT models
 - Other methods fit IRT models and compare model fits (LRT) or item parameters (Lord, Raju)


DIF (3)

- Four main aspects:
 - IRT vs non-IRT
 - Uniform DIF vs nonuniform DIF
 - Two vs more than two groups
 - Item purification

DIF (5)

- Uniform vs nonuniform:
 - DIF effect is uniform if the item-group interaction is independent of the ability level, and nonuniform otherwise
 - Non-IRT methods: conditional association between item response and group membership is independent of matching variable (i.e. sum score)
 - IRT methods:

DIF (6)

DIF (7)

- Two vs more than two groups:
 - Most methods deal with two groups (reference and focal)
 - Some are specifically designed for simultaneous comparison of more than two groups

DIF (8)

- Item purification:
 - DIF items can affect the validity of the measures of DIF
 - Some known effects:
 - Type I error inflation: non-DIF items are incorrectly flagged as DIF
 - Masking effect: Items with large DIF effect can mask the presence of other DIF items but with smaller DIF effects

DIF (9)

- Proposed solution: item purification
- Iterative process that successively removes items flagged as DIF from
 - the computation of sum scores (non-IRT)
 - the rescaling of item parameters (IRT)
- Process stops when
 - no DIF item is detected
 - two successive steps of the process yield the same classification of items

DIF (10)

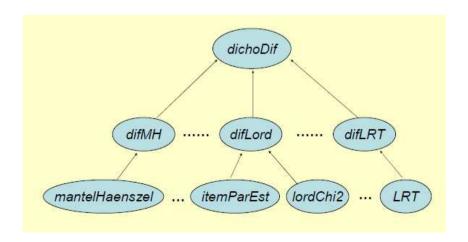
- Item purification
 - controls for Type I error inflation
 - usually yields increased power
- -but
 - can be time consuming
 - no guarantee that the iterative process stops

Outline

- DIF
- DIF methods
- The difR package
- Application

DIF methods

		Groups	
Method	DIF effect	Two	More than two
NON-IRT	Uniform	TID, MH, Std, logReg, SIBTEST	GMH, genLogReg, genTID
NON-IRT	Nonuniform	MH*, BD, logReg, SIBTEST*	genLogReg
IRT	Uniform	Lord, Raju, LRT	genLord
IRT	Nonuniform	Lord, Raju, LRT	genLord


DIF methods (2)

		Groups	
Method	DIF effect	Two	More than two
NON-IRT	Uniform	TID, MH, Std, logReg, SIBTEST	GMH, genLogReg, genTID
NON-IRT	Nonuniform	MH*, BD, logReg, SIBTEST*	genLogReg
IRT	Uniform	Lord, Raju, LRT	genLord
IRT	Nonuniform	Lord, Raju, LRT	genLord

Outline

- DIF
- DIF methods
- The difR package
- Application

The difR package (2)

The difR package

Jointly developed by

Sébastien Béland (UQAM, Canada), Francis Tuerlinckx (K.U. Leuven, Belgium)

Paul De Boeck (University of Amsterdam, The Netherlands and K. U. Leuven, Belgium)

The difR package (3)

- Three levels of R functions:
 - Low level: Working functions, do the computational job
 - Middle level: DIF functions, of the form "dif..." to call a specific method (e.g. difMH for Mantel-Haenszel)
 - High level: dichoDif function, calls several middle level functions and merge their output

The *difR* package (4)

- Generic input parameters:
 - Data: the data matrix
 - group: the vector of group membership
 - focal.name(s): the name(s) of focal group(s)
 - purify: should item purification be performed? (default is FALSE)
 - save.output: should the output be saved into a text file? (default is FALSE)
 - output: specifies the name and the place to save the output

The difR package (6)

- Output:
 - List with all useful information (input and output)
 - Displayed in a visually attractive way through print(.)
 - Can be saved into a text file
 - Can be plotted for visual representation of DIF statistics, through plot(.)

The *difR* package (5)

- Specific input parameters:
 - Depend on the method
 - Can specify:
 - the DIF statistic (e.g. Mantel-Haenszel)
 - the type of logistic model (e.g. logistic regression) or IRT model (e.g. Lord, Raju)
 - The DIF classification thresholds (e.g. standardization)
 - The matrix of item parameters (e.g. Lord, Raju)
 - Etc.

The difR package (7)

- dichoDif function:
 - Calls one or several DIF methods
 - Either for two groups, or for more than two groups
 - All specific options can be passed to dichoDif
 - Returns a summary of all requested methods
 - For direct comparison of method output

Outline

- DIF
- DIF methods
- The difR package
- Application

Application (2)

- Frustrating situations:
 - S1: "A bus fails to stop for me"
 - S2: "I miss a train because a clerk gave me faulty information"
 - S3: "The grocery store closes just as I am about to enter"
 - S4: "The operator disconnects me when I had used up my last 10 cents for a call"

Application

- Data set: verbal aggression example
- 316 students (243 females, 73 males), first year psychology (K.U. Leuven)
- 24 items built by mixing
 - 4 frustrating situations
 - 3 possible aggressive responses
 - 2 possible actions related to aggressive responses

Application (3)

- Possible actions:
 - I want to...
 - − I do…
- Possible aggressive responses:
 - To shout
 - To curse
 - To scold

Application (4)

- Examples:
 - S1DoShout: "A bus fails to stop for me. I shout".
 - S3WantCurse: "The grocery store closes just as I am about to enter. I want to curse."
 - Etc.

Application (6)

- Reference group: female students
- Focal group: male students
- Columns 1-24: items
- Column 25: Anger (not used here)
- Column 26: Gender (group membership)

Application (5)

- "Correct response" if student responds in an aggressive way, that is, if he/she answers "yes".
- Research question: do the items "function" similarly for males and females?
- Data collected by Vansteelandt (2000)
- Available in difR

Application (7)

- Three DIF analyzes:
 - Using Mantel-Haenszel
 - Using Lord's test (and 1PL model)
 - Using dichoDif function and several DIF methods

Application (8)

And now...

Application (10)

- Mantel-Haenszel analysis:
 - Focal group: 1 (males)
 - MH chi-square statistic (default)
 - Significance level: 5% (default)
 - No item purification (default)

```
difMH(verbal, group="Gender", focal.name=1)
```

Application (9)

• Reading and preparing the data:

```
require(difR)
data(verbal)
verbal <-verbal[colnames(verbal)!="Anger"]</pre>
```

Application (11)

• Output:

Detection of Differential Item Functioning using Mantel-Haenszel method with continuity correction and without item purification

Application (12)

Mantel-Haenszel Chi-square statistic:

```
Stat. P-value
S1wantCurse 1.7076 0.1913
S1WantScold 2.1486 0.1427
S1WantShout 0.9926 0.3191
S2WantCurse 1.9302 0.1647
S2WantScold 2.9540 0.0857
S2WantShout 9.6032 0.0019 **
S3WantCurse 0.0013 0.9711
S3WantScold 0.6752 0.4112
S3WantShout 0.8185 0.3656
S4WantCurse 1.6292 0.2018
S4WantScold 0.0152 0.9020
S4WantShout 4.1188 0.0424
S1DoCurse 0.1324 0.7160
S1DoScold 2.7501 0.0972 .
S1DoShout 0.0683 0.7938
S2DoCurse 6.3029 0.0121 *
S2DoScold 6.8395 0.0089 **
S2DoShout 0.2170 0.6414
S3DoCurse 5.7817 0.0162
S3DoScold 3.8880 0.0486 *
S3DoShout 0.2989 0.5846
$4DoCurse 1 1220 0 2895
S4DoScold 1.4491 0.2287
S4DoShout 0.8390 0.3597
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Detection threshold: 3.8415 (significance level: 0.05)
```

Application (13)

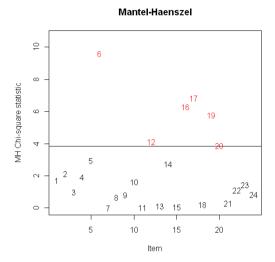
```
Items detected as DIF items:
S2WantShout
S4WantShout
S2DoCurse
S2DoScold
S3DoCurse
S3DoScold
```

Application (14)

```
'A': negligible effect
'B': moderate effect
'C': large effect
```

```
alphaMH deltaMH
S1wantCurse 1.7005 -1.2476 B
S1WantScold 1.7702 -1.3420 B
S1WantShout 1.4481 -0.8701 A
S2WantCurse 1.9395 -1.5567 C
S2WantScold 1.9799 -1.6052 C
S2WantShout 2.8804 -2.4861 C
S3WantCurse 0.9439 0.1358 A
S3WantScold 0.7194 0.7741 A
S3WantShout 1.5281 -0.9965 A
S4WantCurse 1.6849 -1.2260 B
S4WantScold 1.0901 -0.2028 A
S4WantShout 2.3458 -2.0036 C
S1DoCurse 0.7967 0.5340 A
S1DoScold 0.4995 1.6313 C
S1DoShout
           1.1765 -0.3821 A
S2DoCurse
           0.3209 2.6709 C
S2DoScold
           0.3746 2.3072 C
S2DoShout
           0.7931 0.5447 A
S3DoCurse
S3DoScold 0.4727 1.7606 C
S3DoShout
           0.6373 1.0585 B
S4DoCurse
           0.6444 1.0327 B
S4DoScold
          0.6385 1.0541 B
S4DoShout 1.6053 -1.1123 B
Effect size codes: 0 'A' 1.0 'B' 1.5 'C'
```

(for absolute values of 'deltaMH')


Output was not captured!

Application (15)

Plotting the output:

```
plot(
difMH(verbal, group="Gender", focal.name=1)
```

Application (16)

Application (17)

- Other possible options:
 - Significance level: alpha = ...
 - No continuity correction: correct = FALSE
 - Log OR DIF statistic: MHstat = "logOR"
 - Item purification: purify = TRUE
 - Number of iterations: nrIter=...

...

Application (18)

- Lord's test:
 - Focal group: 1 (males)
 - 1PL model to be estimated from 'ltm' package
 - Significance level: 5% (default)
 - No item purification (default)

```
r <- difLord(verbal,
  group="Gender", focal.name=1,
  model="1PL", engine="ltm")</pre>
```

Application (19)

• Structure of the output (using str(r)):

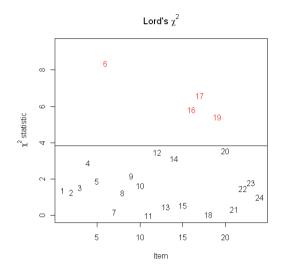
```
$ LordChi
              : num [1:24] 1.37 1.27 1.54 2.88 1.89 ...
$ alpha
              : num 0.05
              : num 3.84
              : int [1:4] 6 16 17 19
$ DIFitems
$ purification: logi FALSE
              : chr "ltm"
$ itemParInit : num [1:48, 1:2] -1.19 -0.557 -0.103 -1.747 -0.713 ...
 ..- attr(*, "dimnames")=List of 2
 ....$ : chr [1:48] "Item1" "Item2" "Item3" "Item4" ...
 .. ..$ : chr [1:2] "b" "se(b)"
              : logi TRUE
              : chr [1:24] "S1wantCurse" "S1WantScold" "S1WantShout" "S2WantCurse" ...
              : chr [1:2] "out" "default"
- attr(*, "class") = chr "Lord"
```

Application (20)

• Visualizing the results:

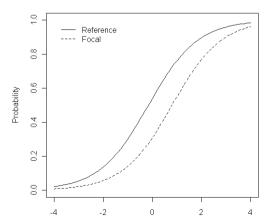
```
plot(r)
```

Application (22)


• Visualizing one item in particular:

```
plot(r, plot="itemCurve", item=6)

or


plot(r, plot="itemCurve",
  item="S2WantShout")
```

Application (21)

Application (23)

S2WantShout

Application (24)

- Other possible options:
 - Significance level: alpha = ...
 - Item purification: purify = TRUE
 - Number of iterations: nrIter=...
 - Provide the item parameters by yourself:

```
irtParam = ...
```

Application (26)

```
Comparison of DIF detection results using 5 methods

Methods used: Mantel-Haenszel, Standardization, Logistic regression,
Lord's chi-square test, Raju's area

Parameters:
Significance level: 0.05
Standardization threshold: 0.1
Mantel-Haenszel DIF statistic: Chi-square statistic
Mantel-Haenszel continuity correction: Yes
Weights for standardized P-DIF statistic: based on the focal group
Logistic regression DIF statistic: LRT statistic
DIF effect(s) tested by logistic regression: uniform DIF effect
Item response model: IPL
Item purification: No
```

Application (25)

- dichoDif use:
 - Focal group: 1 (males)
 - Methods: Mantel-Haenszel, Standardization, logistic regression, Lord's test (1PL), Raju's method (1PL)
 - Significance level: 5% (default)
 - No item purification (default)

```
dichoDif(verbal,group="Gender",
focal.name=1,method=c(
"MH","Std","Logistic","Lord","Raju"),
model="1PL)
```

Application (27)

Comparison of DIF detection results:

```
M-H Stand, Logistic Lord Raju #DIF
SiwantCurse NoDIF NoDIF NoDIF NoDIF 0/5
S1WantScold NoDIF NoDIF NoDIF
S1WantShout NoDIF NoDIF NoDIF
S2WantCurse NoDIF NoDIF DIF
                              MODIF MODIF 1/5
S2WantScold NoDIF DIF NoDIF
                              NoDIF NoDIF 1/5
S2WantShout DIF DIF DIF
S3WantCurse NoDIF NoDIF NoDIF
                              NoDIF NoDIF 0/5
SSWantScold NoDIE NoDIE NoDIE
                              Nobie Nobie 0/5
S3WantShout NoDIF NoDIF NoDIF
                              NoDIF NoDIF 0/5
S4WantCurse NoDIF NoDIF NoDIF
S4WantScold NoDIF NoDIF NoDIF
                              Nobie Nobie 0/5
S4WantShout DIF DIF NoDIF
                              MODIF MODIF 2/5
S1DoCurse NoDIF NoDIF NoDIF
                              NODIE NODIE 0/5
SiDoScold NoDIF NoDIF DIF
S1DoShout NoDIF NoDIF NoDIF
                              NoDIF NoDIF 0/5
S2DoCurse DIF DIF DIF
                              DIE DIE 5/5
S2DoScold DIF DIF DIF
S2DoShout NoDIF NoDIF NoDIF
                              NoDIF NoDIF 0/5
S3DoCurse DIF DIF DIF
                              DIE DIE 5/5
S3DoScold DIF DIF DIF
                              NoDIF NoDIF 3/5
S3DoShout NoDIF NoDIF NoDIF
S4DoCurse NoDIF NoDIF NoDIF
                             Nobte Nobte 0/5
S4DeScold Nobie Nobie Nobie
                             MODIF MODIF 0/5
S4DoShout NoDIF NoDIF NoDIF
                             NoDIF NoDIF 0/5
```

Output was not captured

Application (28)

• For an interpretation of DIF effects with this data set:

De Boeck, P. (2008). Random items IRT models. *Psychometrika*, 73, 533-559.

Final slide 🙂

- Further information:
 - Package: http://cran.r-project.org/web/packages/difR/
 - Magis, D., Béland, S., Tuerlinckx, F., & De Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior Research Methods, 42, 847-862.
 - Slides and R script: http://hdl.handle.net/2268/65169

Further work

- Improve some methods (e.g. more flexibility in IRT model fitting, incorporating new packages, etc.)
- Include SIBTEST and transformed item difficulties (TID) methods
- Extend to polytomous items
- Allow for missing data

THANK YOU!

... and if doesn't work ...

THANK YOU!

