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 COMPOSITIONAL DATA . . .

1 Compositional Data . . .

are composed of a set of variables whose contents are in a certain interval and sum up
to a constant for each observation, e.g. the composition of the sediments in a lake which
could be partitioned in sand, silt, and clay:

obs. sand silt clay
∑

 . . . 

 . . . 
...

...
...

...
...

i yi yi yi yi+
...

...
...

...
...

Because of the constraint, any variable can be omitted and represented by yj = −
∑

i,j
yi .

Compositional data reflect – as the name suggests – the ‘compositional structure’ of so-
mething across all variables. It can be applied in fields as diverse as medicine (toxins etc.
in blood samples), geology, psychology, . . . .





 COMPOSITIONAL DATA . . .

As the beta distribution is the continuous version of the binomial dist., the Dirichlet dist.
is a continuous multinomial distribution. This allows for nominal items without coercing
respondents to select only one category, e.g.:

Which party would you vote for?

Grüne SPÖ ÖVP FPÖ

multinomial    

Dirichlet . . . 

If the ‘probability’ of answering in a certain cateogory is spread across the choices, a Di-
richlet approach is more informative.

This package aims at implementing a Dirichlet-regression using two different paramete-
rizations along with a strong focus on graphical representation of the data and models,
model tests and model selection.





 THE DIRICHLET DISTRIBUTION

2 The Dirichlet Distribution

The Dirichlet distribution is a generalization of the beta dist. for more than  variables
(of which one is usually omitted, because it is redundant; y =  − y and vice versa).
These k variables have to lie in the interval (, ) and sum up to  for each observation.

f (y|α) =


B(α)

k
∏

i=

y
αi−
i ()

Normalization is provided by B(α), the multinomial beta-function, which can be expres-
sed as:

B(α) =

∏k
i=Γ(αi )

Γ(
∑k

i=αi )
()

Each component is governed by a shape parameter α >  which are in and of itself not
very informative. Their sum α =

∑

i αi can be interpreted as a ‘precision parameter’.





 THE DIRICHLET DISTRIBUTION

With this precision parameter, we can calculate the means

E(yi ) =
αi

α

and also the variances

VAR(yi ) =
αi(α −αi )
α(α + )

and covariances of the variables

COV(yi , yj ) =
−αiαj

α(α + )
; i , j





 DATA IN THE SIMPLEX

3 Data in the Simplex

Because one variable can always be represented as the difference between the constant
and the sum of the other variables, the data lose a degree of freedom. Practically, this
means that if we have k variables, the data lie on a k − -dimensional simplex. With 
variables we can do a so-called ‘ternary plot’, i.e. the data lie on a triangle.
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These data all have an expected value of (., ., .) but with precisions of ,  and  so
the alphas are (, ., .), (, , ) and (, , ).
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 REGRESSION MODELS – PARAMETERIZATION 

4 Regression Models – Parameterization 1

In, what I call the ‘common parameterization’, we try to predict the alphas for each com-
ponent by a set of variables. Because α must be greater than , we can conveniently use a
log-link for this parameterization. So for each component yi there is a vector of regression
coefficients β along with an appropriate design matrix X .
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()

Because all α parameters are modeled individually, heteroskedasticity is accounted for
implicitly.
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 REGRESSION MODELS – PARAMETERIZATION 

5 Regression Models – Parameterization 2

If we want a kind of mean/dispersion model, we can take an approach as in betareg

where α = µφ. The precision paramter φ can be predicted using a log-link, for example.
For the means we have to make sure that they always sum up to , so a strategy as in

multinomial regression models is employed.

µc =
exp(X [c]β[c])

+
∑

exp(Xβj )
c , b ()

µb =


+
∑

exp(Xβj )
()





 PROS AND CONS

6 Pros and Cons

The common parameterization is more flexible, especially concerning model selection
whereas the reparameterization might be more appealing to practitioners due to the in-
terpretability as in multinomial logistic regression.
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 MODEL SPECIFICATION

7 Model Specification

Depending on the parameterization there are two ways of setting up the model formulae.
All dependent variables are first prepared by DR.data(y1,y2,y3) (this normalizes and
transforms the data if necessary).

For the common parameterization we have
DirichReg(DV ˜ x1 * x2, data = some.data)

or
DirichReg(DV ˜ x1 + x2 | x1 * x2 | x1, data = some.data)

The reparameterization contains only one set of predictors for the means and one for
the precision.
DirichReg(DV ˜ x1 * x2 | phi ˜ x1 + x2, data = some.data)





 ESTIMATION

8 Estimation

The log-likelihood functions have been adapted and simplified for both parameterizati-
ons and the gradient-vectors were derived analytically to improve and speed up optimi-
zation.

As of now, the BFGS algorithm as implemented in optim is used for optimization. To
compute the parameters’ standard errors, the Hessian resulting from the optimization
process is used.
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 MODEL SELECTION

9 Model Selection

Regardless of the parameterization, an anova function is implemented to compare and
select models.

In the long run, an iterative algorithm for model selection would be ‘nice to have’, pro-
bably involving selection strategies as in graphical models. This would be especially in-
teresting for the common parameterization, because each component is modeled by a
completely independent set of predictors.





 EXAMPLE – ARCTIC LAKE

10 Example – Arctic Lake

The ground composition of an arctic lake was partitioned into sand, silt, and clay. We
want to find out, if the composition can be predicted by the depth. First a ternary plot:
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 EXAMPLE – ARCTIC LAKE

Fitting a model in R:

> AL <- DR.data(ArcticLake[,1:3])

> res <- DirichReg(AL ~ depth + I(depth^2), ArcticLake)

> summary(res)

Call:

DirichReg(formula = AL ~ depth + I(depth^2), data = ArcticLake)

RESIDUALS WILL BE IMPLEMENTED SOON! :)

--------------------------------------------------------------------------------

Coefficients for variable no. 1: sand

Estimate Std. Error z-Value p-Value

(Intercept) 1.4361854 0.8022580 1.79 0.0734 .

depth -0.0072376 0.0329250 -0.22 0.8260

I(depth^2) 0.0001324 0.0002760 0.48 0.6314

--------------------------------------------------------------------------------

Coefficients for variable no. 2: silt

Estimate Std. Error z-Value p-Value

(Intercept) -0.0259884 0.7595826 -0.034 0.9727

depth 0.0717460 0.0342953 2.092 0.0364 *

I(depth^2) -0.0002679 0.0003088 -0.868 0.3856

--------------------------------------------------------------------------------

Coefficients for variable no. 3: clay

Estimate Std. Error z-Value p-Value

(Intercept) -1.7931592 0.7360825 -2.436 0.01485 *

depth 0.1107914 0.0357608 3.098 0.00195 **

I(depth^2) -0.0004872 0.0003307 -1.473 0.14074

--------------------------------------------------------------------------------

Signif. codes: ‘***’ < .001, ‘**’ < 0.01, ‘*’ < 0.05, ‘.’ < 0.1

Log-likelihood: 81.96 on 9 df (30 iterations)

Link: Log

Parameterization: common





 EXAMPLE – ARCTIC LAKE

Graphics and Interpretation:
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Apart from the depth-related changing composition, we can see from α that the preci-
sion increases with depth.
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 TO DO & CONCLUSION

11 To do & Conclusion

• Full implementation of the alternative paramterization.

• Good starting values.

• Various residuals.

• Generic plotting routines.

• Allows for the collection of multinomial data in an uncommon and potentially
more informative way.

• Applicable in many fields.

• User-friendly modeling and presentation of results.
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Thank you!

marco.maier@wu.ac.at

http://r-forge.r-project.org/projects/dirichletreg/
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