Ghent University

Overview

- 1. (gentle) introduction to structural equation modeling (SEM)
- 2. introducing the lavaan package
- 3. three small examples (cfa, sem, growth)
- 4. how does lavaan work?
- 5. future plans

ves Rosseel	lavaam: an R package for structural equation modeling and more	1 / 42
Ionartment of Data Analysis		Ghort University

lavaan: an R package for structural equation

modeling and more

Yves Rosseel

Department of Data Analysis Ghent University Psychoco 2011 – Tübingen

Univariate linear regression

 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \epsilon_i$ (i = 1, 2, ..., n)

Yves Rosseel	lavaan: an R package for structural equation modeling and more	2/42

Multivariate regression

Department of Data Analysis

Path Analysis

- · testing models of 'causal' relationships among observed variables
- · all variables are observed (manifest)
- · system of regression equations

Measurement part only: confirmatory factor analysis (CFA)

 factor analysis: representing the relationship between one or more latent variables and their (observed) indicators

Department of Data Analysis

Structural Equation Modeling

· path analysis with latent variables

Department of Data Analysis

Classic example CFA

- · well-known dataset; based on Holzinger & Swineford (1939) data
- · also analyzed by Jöreskog (1969)
- · 9 observed 'indicators' measuring three 'latent' factors:
 - a 'visual' factor measured by x1, x2 and x3
 - a 'textual' factor measured by x4, x5 and x6
 - a 'speed' factor measured by x7, x8 and x9
- N=301
- · we assume the three factors are correlated

Diagram of the model

The standard CFA model: matrix representation

- · the classic LISREL representation uses three matrices (for CFA)
- · the LAMBDA matrix contains the 'factor structure':

$$\mathbf{\Lambda} = \begin{bmatrix} x & 0 & 0 \\ x & 0 & 0 \\ 0 & x & 0 \\ 0 & x & 0 \\ 0 & 0 & x \\ 0 & 0 & x \\ 0 & 0 & x \end{bmatrix}$$

 the variances/covariances of the latent variables are summarized in the PSI matrix;

Observed covariance matrix: S

- n is the number of observed variables: n = 9
- · observed covariance matrix:

- we want to 'explain' the observed correlations/covariances by postulating a number of latent variables (factors) and a corresponding factor structure
- we will 'rewrite' the n(n+1)/2 = 45 elements in the covariance matrix as a function a smaller number of 'free parameters' in the CFA model, summarized in a number of (typically sparse) matrices

$$Ψ = \begin{bmatrix} x \\ x & x \\ x & x & x \end{bmatrix}$$

 what we can not explain by the set of common factors (the 'residual part' of the model) is written in the (typically diagonal) matrix THETA:

· note that we have only 24 parameters (of which 21 are estimable)

The standard CFA model: parameter estimation

· in the standard CFA model, the 'implied' covariance matrix is:

$$\Sigma = \Lambda \Psi \Lambda' + \Theta$$

- estimation problem: choose the 'free' parameters, so that the estimated implied covariance matrix ($\hat{\Sigma})$ is 'as close as possible' to the observed covariance matrix S
 - generalized (weighted) least-squares estimation
 - maximum likelihood estimation
- · identification: we need to fix the 'scale' of the latent variables
 - for each factor: fix the loading of one indicator to 1.0
 - OR: fix the variance of the factors to 1.0 (=standardize the latent variables)

ves Rosseel	lavsam: an R package for structural equation modeling and more	13 / 42
lepartment of Data Analysis		Ghent University

Software for SEM (non-commercial)

- Mx
- gllamm (Stata)
- ...
- · various R packages (sem, OpenMx, lavaan)

Ghent University

Software for SEM (commercial)

The big four

- LISREL
- EQS
- AMOS
- MPLUS

Others

- CALIS/TCALIS (SAS/Stat)
- SEPATH (Statistica)
- · RAMONA (Systat)
- ...

Yves Rosseel

	an Disasteria da structural en atten analatica and anon
134	aan: an ri paokage lor shocural equation modeling and more

Department of Data Analysis

A short history of LISREL

- 1969: seminal paper by Karl Jöreskog: A General Approach to Confirmatory Maximum Likelihood Factor Analysis, published in Psychometrika
- 1970: Karl Jöreskog wrote the first FORTRAN program for CFA: ACOVS, later extended to ACOVSM, COFAMM, and eventually LISREL I (1972)
- 1972: LISREL I (LInear Structural RELationships) + LISREL II
- · 1976: LISREL III (first commercial version?)
- 1978: LISREL IV
- 1981: LISREL V
- · 1984: LISREL VI (as part of SPSS/X)
- · 1989: LISREL 7 (as part of SPSS/PC)
- 1993: LISREL 8
- today: LISREL 8.8

14/42

Ghent University

What is lavaan?

- · lavaan is an R package for latent variable analysis:
 - confirmatory factor analysis: function cfa()
 - structural equation modeling: function sem()
 - latent curve analysis / growth modeling: function growth ()
 - (item response theory (IRT) models)
 - (latent class + mixture models)
 - (multilevel models)
- the lavaan package is developed to provide useRs, researchers and teachers a free, open-source, but commercial-quality package for latent variable modeling
- the long-term goal of lavaan is to implement all the state-of-the-art capabilities that are currently available in commercial packages

Yves Rosseel	lavaum: an R package for structural equation modeling and more	17 / 42
Department of Data Analysis		Ghert University

Why do we need lavaan?

- perhaps the best state-of-the-art software packages in this field are still closedsource and/or commerical:
 - commercial: LISREL, EQS, AMOS, MPLUS
 - free, but closed-source: Mx
 - free, but relying on third-party commercial software: gllamm (stata), OpenMx (the NPSOL solver)
- it seems unfortunate that new developments in this field are hindered by the lack of open source software that researchers can use to implement their newest ideas
- in addition, teaching these techniques to students was often complicated by the forced choice for one of these commercial packages

Current status of lavaan

- · 1st public (CRAN) release of lavaan (0.3-1): May 2010
- · 2nd public (CRAN) release of lavaan (0.4.7): Feb 2011
- webpage: http://lavaan.org
 - documentation: 'Introduction to lavaan' (about 25 pages)
 - overview of new features/changes, known issues and bugs/glitches
 - development versions

Department of Data Analysis

Yves Rosseel

lavaan: an R package for structural equation modeling and more

18 / 42 Ghent University

Related R packages

- sem
 - developer: John Fox (since 2001)
 - for a long time the only option in R
- OpenMx
 - 'advanced' structural equation modeling
 - developed at the University of Virginia (PI: Steven Boker)
 - Mx reborn
 - free, but the solver is (currently) not open-source
 - http://openmx.psyc.virginia.edu/
- · interfaces between R and commercial packages:
 - REQS
 - MplusAutomation

Yves Rosseel

Features of lavaan

1. lavaan is reliable and robust

- · extensive testing before a 'public' release on CRAN
- · no convergence problems (for admissible models)
- · numerical results are very close (if not identical) to commercial packages:
 - Mplus (if mimic="Mplus", default)
 - EQS(if mimic="EQS")

2. lavaan is easy and intuitive to use

- the 'lavaan model syntax' allows users to express their models in a compact, elegant and useR-friendly way
- · many 'default' options keep the model syntax clean and compact
- but the useR has full control (cfr. function lavaan ())

/ves Rosseel	lavaan: an R package for structural equation modeling and more	21 / 42
Department of Data Analysis		Ghent University

4. lavaan provides a wealth of information

- · the summary gives a compact overview of the results
- the fitMeasures function provides a number of popular fit measures (CFI, TLI, RMSEA, SRMR, $\ldots)$
- the modindices function provides modification indices and corresponding expected parameter changes (EPCs)
- the residuals function provides raw, normalized and standardized residuals
- all computed information can be extracted from the fitted object using the $\tt inspect$ function
- coef, fitted.values, vcov, predict, update, AIC, BIC, ...

3. lavaan provides many advanced options

- · full support for meanstructures and multiple groups
- · several estimators are available (GLS, WLS, ML and variants)
- · standard errors: using either observed or expected information
- support for nonnormal data: using robust standard errors and a scaled test statistic (Satorra-Bentler)
- support for missing data: direct ML (aka full information ML), with robust standard errors and a scaled test statistic (Yuan-Bentler)
- · all gradients are computed analytically
- · equality constraints (both within and across groups)
- ...

Department of Data Analysis

Yves Rosseel

lavaan: an R package for structural equation modeling and more

22 / 42 Ghent University

Department of Data Analysis

The 'lavaan model syntax'

- at the heart of the lavaan package is the 'model syntax': a formula-based description of the model to be estimated
- a distinction is made between four different formula types: 1) regression formulas, 2) latent variable definitions, 3) (co)variances, and 4) intercepts

1. regression formulas

· in the R environment, a regression formula has the following form:

 $y \sim x1 + x2 + x3 + x4$

- in lavaan, a typical model is simply a set (or system) of regression formulas, where some variables (starting with an 'f' below) may be latent.
- · for example:

```
y1 + y2 \sim f1 + f2 + x1 + x2

f1 \sim f2 + f3

f2 \sim f3 + x1 + x2
```

2. latent variable definitions

- if we have latent variables in any of the regression formulas, we need to 'define' them by listing their manifest indicators
- we do this by using the special operator "=~", which can be read as is manifested by
- · for example:

f1 =~ y1 + y2 + y3 f2 =~ y4 + y5 + y6 f3 =~ y7 + y8 + y9 + y10

3. (residual) variances and covariances

- · variances and covariances are specified using a 'double tilde' operator
- · for example:

y1 ~~ y1 y1 ~~ y2 f1 ~~ f2

Yves Rosseel	lavaus: an R package for structural equation modeling and more	25/42	Yves Rosseel	lavaam: an R package for structural equation modeling and more

Department of Data Analysis

a complete description of a model: literal string

· enclose the model syntax by single quotes

```
> myModel <- ' # regressions
                  v ~ f1 + f2 +
                      x1 + x2
                 f1 ~ f2 + f3
                 f2 ~ f3 + x1 + x2
               # latent variable definitions
                 f1 =~ v1 + v2 + v3
                 f2 =~ v4 + v5 + v6
                 f3 =~ y7 + y8 +
                       y9 + y10
               # variances and covariances
                 y1 ~~ y1
                 v1 ~~ y2
                 f1 ~~ f2
               # intercepts
                 y1 ~ 1
                 f1 ~ 1
```

or put the syntax in a separate (text) file, and read it in using readLines ()

Yups Rosseel

Department of Data Analysis 4. intercepts

- intercepts are simply regression formulas with only an intercept (explicitly denoted by the number '1') as the only predictor
- · for both observed and latent variables
- · for example:
 - y1 ~ 1 f1 ~ 1

26 / 42 Ghent University

Example 1: confirmatory factor analysis

Yves Rosseel

Departmen

Fitting a model using the lavaan package

- from a useR point of view, fitting a model using lavaan consists of three steps:
 - 1. specify the model (using the model syntax)
 - 2. fit the model (using one of the functions cfa, sem, growth)
 - 3. see the results (using the summary, or other extractor functions)
- · for example:

>	# 1. specify the model
>	HS.model <- ' visual =~ x1 + x2 + x3
+	textual =~ x4 + x5 + x6
+	speed =~ x7 + x8 + x9 '
^ ^	<pre># 2. fit the model fit <- cfa(HS.model, data=HolzingerSwineford1939)</pre>
>	# 3. display summary output
>	summary(fit, fit.measures=TRUE, standardized=TRUE)

Output summary (fit, fit.measures=TRUE, standardized=TRUE)

Number of free parameters

Lavaan (0.4-7) converged normally after	35 iterations	
Number of observations	301	
Estimator Minimum Function Chi-square	ML 85.306	
Degrees of freedom P-value	24 0.000	
Chi-square test baseline model:		
Minimum Function Chi-square	918.852	
Degrees of freedom P-value	36 0.000	
Full model versus baseline model:		
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.931 0.896	
Loglikelihood and Information Criteria:		
Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)	-3737.745 -3695.092	

lavaun: an R package for structural equation modeling and more

21

ves Rosseel	lavaan: an R package for structural equation modeling and more						29 / 42
epartment of	Data Analysis					Gr	ent University
						-	
	Akaike (AIC)				7517.490		
	Bavesian (BTC	3			7595 339		
	Sample-size a	djusted Bayes	ian (BIC)		7528.739		
F	loot Mean Squar	e Error of Ap	proximati	on:			
	RMSEA				0.092		
	90 Percent Co	nfidence Inte	rval	0.07	1 0.114		
	P-value RMSEA	<= 0.05			0.001		
5	standardized Ro	ot Mean Squar	e Residua	1:			
	SRMR				0.065		
I	arameter estim	ates:					
	Information				Expected		
	Standard Erro	rs			Standard		
		Estimate	Std.err	Z-value	P(> z)	Std.lv	Std.all
I	atent variable	s:					
	visual =~						
	×1	1.000				0.900	0.772
	x2	0.554	0.100	5.554	0.000	0.498	0.424
	x 3	0.729	0.109	6.685	0.000	0.656	0.581
	textual =~						
	×4	1.000				0.990	0.852
	x5	1.113	0.065	17.014	0.000	1.102	0.855
ves Rosseel		lavaan: an R package fi	or structural equa	tion modeling and	d more		31 / 42

					Grie	ni onweisty
x6	0.926	0.055	16.703	0.000	0.917	0.838
speed =~						
x 7	1.000				0.619	0.570
x 8	1.180	0.165	7.152	0.000	0.731	0.723
×9	1.082	0.151	7.155	0.000	0.670	0.665
ovariances:						
visual ~~						
textual	0.408	0.074	5.552	0.000	0.459	0.459
speed	0.262	0.056	4.660	0.000	0.471	0.471
textual ~~						
speed	0.173	0.049	3.518	0.000	0.283	0.283
ariances:						
x1	0.549	0.114	4.833	0.000	0.549	0.404
x2	1.134	0.102	11.146	0.000	1.134	0.821
x 3	0.844	0.091	9.317	0.000	0.844	0.662
x4	0.371	0.048	7.778	0.000	0.371	0.275
x 5	0.446	0.058	7.642	0.000	0.446	0.269
x 6	0.356	0.043	8.277	0.000	0.356	0.298
x 7	0.799	0.081	9.823	0.000	0.799	0.676
x 8	0.488	0.074	6.573	0.000	0.488	0.471
x9	0.566	0.071	8.003	0.000	0.566	0.558
visual	0.809	0.145	5.564	0.000	1.000	1.00
textual	0.979	0.112	8.737	0.000	1.000	1.000
	0 384	0 086	4 451	0 000	1 000	1 000

30/42

Example 2: structural equation model

Department of Data Analysis

Ghent University

How does lavaan work?

Step 1: From model syntax to 'list' representation

- · model syntax is parsed by the function lavaanify which constructs a generic 'list' representation of the model
- · decide which parameters are free or fixed, handle equality constraints and other user-requested modifications
- · optionally add elements to make the model 'complete' (residual variances, covariances, intercepts, ...)
- · optionally fix the metric of latent variables
- everything is automatic if the functions cfa, sem or growth are used; nothing is done automatic if the function lavaan is used
 - > HS.model <- ' visual =~ x1 + label("a")*x2 + x3 textual =~ x4 + equal("a") *x5 + x6 speed =~ x7 + equal("a")*x8 + 0.75*x9 '
 - > User <- lavaanify(HS.model, auto.fix.first = TRUE, auto.var = TRUE, auto.cov.lv.x = TRUE, orthogonal = TRUE)

Example 3: growth curve model

Yves Rosseel

lavaun: an R package for structural equation modeling and more

34/42

Department of Data Analysis

Ghon			

>	usei	-									
	id	lhs	op	rhs	user	group	free	ustart	fixed.x	eq.id	free.uncon
1	1	visual	=~	×1	1	1	0	1.00	0	0	0
2	2	visual	=~	x2	1	1	1	NA	0	2	1
3	3	visual	=~	x 3	1	1	2	NA	0	0	2
4	- 4	textual	=~	x4	1	1	0	1.00	0	0	0
5	5	textual	=~	×5	1	1	1	NA	0	2	3
6	6	textual	=~	×6	1	1	3	NA	0	0	4
7	7	speed	=~	x7	1	1	0	1.00	0	0	0
8	8	speed	=~	×8	1	1	1	NA	0	2	5
9	9	speed	=~	×9	1	1	0	0.75	0	0	0
10	10	×1	~~	×1	0	1	4	NA	0	0	6
11	11	x2	~~	×2	0	1	5	NA	0	0	7
12	12	×3	~~	×3	0	1	6	NA	0	0	8
13	13	×4	~~	×4	0	1	7	NA	0	0	9
14	14	x5	~~	x 5	0	1	8	NA	0	0	10
15	15	жб	~~	×6	0	1	9	NA	0	0	11
16	16	x7	~~	×7	0	1	10	NA	0	0	12
17	17	×8	~~	×8	0	1	11	NA	0	0	13
18	18	×9	~~	×9	0	1	12	NA	0	0	14
19	19	visual	~~	visual	0	1	13	NA	0	0	15
20	20	textual	~~	textual	0	1	14	NA	0	0	16
21	21	speed	~~	speed	0	1	15	NA	0	0	17
22	22	visual	~~	textual	0	1	0	0.00	0	0	0
23	23	visual	~~	speed	0	1	0	0.00	0	0	0
24	24	textual	~~	speed	0	1	0	0.00	0	0	0
				-							

Yves Rosseel

Step 2: From 'list' representation to 'matrix' representation

- · the 'list' representation is converted to a 'matrix' representation
- · currently only the (all-y) LISREL representation is available
 - if no meanstructure, 4 matrices: LAMBDA, BETA, PSI, THETA
 - if meanstructure, two additional matrices: ALPHA, NU
- · additional representations (EQS, RAM, ...) can easily be added
 - > fit <- cfa(HS.model, data=HolzingerSwineford1939, orthogonal=TRUE)
 > inspect(fit)

	vi	sual to	extul s	need		
	×1	0	0	0		
	*2	1	ō	0		
	x3	2	ō	ō		
	×4	0	ó	ò		
	×5	ò	1	Ó		
	×6	0	3	0		
	×7	0	0	0		
	×8	ò	ò	1		
	×9	0	0	0		
(ves	Rosseel		lavaa	n: an Ripack	or structural equation modeling and more	37 / 42

Department of Data Analysis

Ghent University

Step 3: fitting the model

- · free parameters are estimated using unconstrained optimization
 - built-in optimizer: nlminb
 - analytical gradients
 - efficient conversion between:
 - * 'matrix' representation (to compute the objective function and gradient)
 - * 'vector' representation (to be used by the optimizer)
- · optionally, (robust) standard errors are computed
- · optionally, a (scaled) test statistic is computed
- · a fitted object is created (S4 class 'lavaan')

\$theta									
	x 1	x 2	x 3	x 4	x 5	x 6	x 7	x 8	×9
x 1	- 4								
x 2	0	5							
x 3	0	0	6						
x 4	0	0	0	7					
x 5	0	0	0	0	8				
x 6	0	0	0	0	0	9			
x 7	0	0	0	0	0	0	10		
x 8	0	0	0	0	0	0	0	11	
x 9	0	0	0	0	0	0	0	0	12
\$psi									
			vis	lal	ter	ctu:	1 5]	peed	1
visual 13									
textual 0 14									
speed 0 0 15									

Future plans

Support for categorical observed responses

- · binary, ordinal, and limited-dependent (censored) observed responses
- · using the 'limited-information' approach (eg polychoric correlations)
 - cf. Mplus WLSMV estimator
 - Gherard Arminger donated the source code of MECOSA to the lavaan project (written for GAUSS)
- · using the maximum likelihood approach
 - entering the IRT world
 - lavaan as a front-end for IRT packages?

Support for discrete latent variables

- · latent class and mixture models
- · how should we implement this syntax-wise?

class(k=2)*c1 =~ y1 + y2 + y3 + y4 class(k=4)*c2 =~ y5 + y6 + y7

Support for hierarchical/multilevel data

Bayesian estimation

Export/import utilities

....

Yves Rosseel

Thank you for your attention

http://lavaan.org

lavsan: an R package for structural equation modeling and more

41/42

Ghent University

Yves Rosseel

Department of Data Analysis

lavaan: an R package for structural equation modeling and more

42/42