

Dimensionality of the Perceptual Space of Achromatic Colors

Nora Umbach Research Methods and Mathematical Psychology

February 2011

UNIVERSITAT

Fechnerian Scaling

Stimuli

Outline

Achromatic color perception

Stimulus configurations

Fechnerian Scaling

Analysis of data

2 | Nora Umbach

Achromatic color perception

Stimulus configurations

Fechnerian Scaling

Analysis of data

Color perception

- We have a tendency to treat color as a property of objects
- Experienced color is neither a property of objects, nor a property of light
- The physical or physiological quantifications of color do not fully explain the psychophysical perception of color appearance

Edward H. Adelson

space of achromatic colors for individual observers

Color perception

Stimuli Fechnerian Scaling Analysis

Color perception

UNIVERSITAT

- We have a tendency to treat color as a property of objects
- Experienced color is neither a property of objects, nor a property of light
- The physical or physiological quantifications of color do not fully explain the psychophysical perception of color appearance
- In this talk we will only focus on achromatic colors

Dimensionality of the perceptual space of achromatic colors

Stimuli

- Traditional view assumes that achromatic color perception may be represented by a unidimensional achromatic color space (ranging from white to black)
- Logvinenko & Maloney (2006) and Niederée (2010) present recent evidence that this representation is at least two-dimensional
- Up to now there is no systematic investigation of the structure of the perceptual space of achromatic colors
- Our experiments aim at a characterization of the perceptual

UNIVERSITAT TÜBINGEN

Color perception

Fechnerian Scaling

Stimulus presentation

UNIVERSITAT TÜBINGEN

Stimulus configurations

Achromatic color perception

Stimulus configurations

Fechnerian Scaling

Analysis of data

Color perception

Stimuli

Ratio principle

Stimuli

• Prominent explanation of experimental results where subjects

had to match two centers presented in different surrounds

• Ratio principle postulates that centers will be adjusted until ratio between center and surround is (nearly) identical for

• Infields will then be perceived as metameric (being of the

to the level of illumination. (Gilchrist, 2006, p. 82)

(postulated by Wallach, 1948)

both configurations

Color perception

same color)

7 | Nora Umbach

UNIVERSITAT

Fechnerian Scaling Analysis

UNIVERSITAT UUNIVERSITAT TÜBINGEN	olor perception	Stimuli	Fechnerian Scaling	Analysis	_	UNIVERSITAT TÜBINGEN Co	or perception	Stimuli	Fechnerian Scaling	Analysis
Stimuli						Stimuli				
gray1a	gray2a	gray3a	gray4a	gray5a		gray1a	gray2a	gray3a	gray4a	gray5a
gray1b	gray2b	gray3b	gray4b	gray5b		gray1b	gray2b	gray3b	gray4b	gray5b
11 Nora Umbach					_	11 Nora Umbach				
UNIVERSITAT TÜBINGEN	olor perception	Stimuli	Fechnerian Scaling	Analysis	_	UNIVERSITAT UUIVERSITAT TÜBINGEN Co	lor perception	Stimuli	Fechnerian Scaling	Analysis
						Probability [Distance Hy	pothesis		
Achromati	c color percepti	on				The probal	oility-distance	hypothesis st	ates that the pro	obability
Stimulus c	onfigurations					with which of some sub	one stimulus is ojective distanc	discriminated te between thes	from another is se stimuli. (Dzha	a function Ifarov,
Fechnerian	Scaling					2002, p. 35	2)			
Analysis of	data						$\psi(\mathbf{x},$	y) = f[D(x)]	к, у)]	

• FS is suitable to describe spaces of arbitrary dimensionality	$D(x,y) \ge 0$ interaction of the second seco	(1) (2) (3) (4)
14 Nora Umbach	15 Nora Umbach	
UNIVERSITAT Color perception Stimuli Fechnerian Scaling Analysis	UNIVERSITAT Color perception Stimuli Fechnerian Scaling	Analysis
Regular Minimality		
 Most fundamental property of discrimination probabilities 	Achromatic color perception	
 Only requirement for computation of Fechnerian distances For any x ≠ y 	Stimulus configurations	
$\psi(x,x) < min\{\psi(x,y),\psi(y,x)\}.$	Fechnerian Scaling	
	Analysis of data	

17 | Nora Umbach

each other • Fechnerian Scaling computes 'subjective' distances among

• Most basic cognitive ability: to tell two stimuli apart from

Stimuli

Fechnerian Scaling

- stimuli from their pairwise discrimination probabilities • Subjects are required to give one of two answers: 'x and y are
- the same' or 'y and y are different'

Subjective Distances

• Subjective distances between stimuli are defined here, measuring the degree of similarity (or dissimilarity) between the underlying representations

Stimuli

• Fechnerian distances satisfy all properties of a metric:

$D(x,y) \geq 0$	non-negativity	(1)
D(x,y) = 0 iff $x = y$	identity of indiscernibles	(2)
D(x,y)=D(y,x)	symmetry	(3)
$D(x,z) \leq D(x,y) + D(y,z)$	triangle inequality	(4)

Analysis

Discrimination Probabilities

Stimuli Fechnerian Scaling Analysis

Analysis

Discrimination probabilities

	gray1a	gray2a	gray3a	gray4a	gray5a	gray1b	gray2b	gray4b	gray5b
gray1a	0.00	0.07	0.40	0.76	1.00	0.93	0.33	1.00	1.00
gray2a	0.07	0.01	0.11	0.36	0.91	1.00	0.73	1.00	1.00
gray3a	0.67	0.13	0.01	0.12	0.71	0.98	0.73	0.76	1.00
gray4a	0.91	0.82	0.25	0.01	0.11	1.00	1.00	0.47	0.93
gray5a	1.00	0.97	0.80	0.16	0.01	1.00	1.00	0.47	0.93
gray1b	0.93	1.00	1.00	1.00	1.00	0.00	0.23	1.00	1.00
gray2b	0.33	0.60	0.51	1.00	1.00	0.73	0.00	1.00	0.97
gray4b	1.00	1.00	0.71	0.73	0.53	1.00	1.00	0.01	0.63
gray5b	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.73	0.00

Fechnerian Scaling

Discrimination probabilities

	gray1a	gray2a	gray3a	gray4a	gray5a	gray1b	gray2b	gray4b	gray5b
gray1a	0.00	0.07	0.40	0.76	1.00	0.93	0.33	1.00	1.00
gray2a	0.07	0.01	0.11	0.36	0.91	1.00	0.73	1.00	1.00
gray3a	0.67	0.13	0.01	0.12	0.71	0.98	0.73	0.76	1.00
gray4a	0.91	0.82	0.25	0.01	0.11	1.00	1.00	0.47	0.93
gray5a	1.00	0.97	0.80	0.16	0.01	1.00	1.00	0.47	0.93
gray1b	0.93	1.00	1.00	1.00	1.00	0.00	0.23	1.00	1.00
gray2b	0.33	0.60	0.51	1.00	1.00	0.73	0.00	1.00	0.97
gray4b	1.00	1.00	0.71	0.73	0.53	1.00	1.00	0.01	0.63
gray5b	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.73	0.00

18 | Nora Umbach

Psychometric function

'Middle' of cross compared to rest $\psi(\text{gray}3, y)$

18 | Nora Umbach

gray1 gray2 gray3 gray4 gray5

Infield

19 | Nora Umbach

gray8 ·

gray7

Analysis

fechner

• Check for regular minimality

R> library(fechner)
R> check.regular(psi)
\$check
[1] "regular minimality"
\$in.canonical.form
[1] TRUE

• Calculate Fechnerian Distances

R> fs <- fechner(psi, comp=T, check=T)
R> fdis <- fs[[6]]</pre>

• MDS

R> library(smacof)
R> mds2 <- smacofSym(fdis, ndim=2)</pre>

20 | Nora Umbach

UNIVERSITAT

Fechnerian Scaling

Fechnerian Distances

	gray1a	gray2a	gray3a	gray4a	gray5a	gray1b	gray2b	gray4b	gray5b
gray1a	0.00	0.12	0.34	0.69	0.94	1.50	0.67	1.61	2.00
gray2a		0.00	0.22	0.57	0.82	1.62	0.79	1.48	1.99
gray3a			0.00	0.35	0.60	1.70	1.01	1.26	1.99
gray4a				0.00	0.25	1.83	1.36	1.12	1.92
gray5a					0.00	1.93	1.61	0.98	1.92
gray1b						0.00	0.97	1.99	2.00
gray2b							0.00	1.99	1.97
gray4b								0.00	1.35
gray5b									0.00

Stimuli

Fechnerian Distances

		-	-						
	gray1a	gray2a	gray3a	gray4a	gray5a	gray1b	gray2b	gray4b	gray5b
gray1a	0.00	0.12	0.34	0.69	0.94	1.50	0.67	1.61	2.00
gray2a		0.00	0.22	0.57	0.82	1.62	0.79	1.48	1.99
gray3a			0.00	0.35	0.60	1.70	1.01	1.26	1.99
gray4a				0.00	0.25	1.83	1.36	1.12	1.92
gray5a					0.00	1.93	1.61	0.98	1.92
gray1b						0.00	0.97	1.99	2.00
gray2b							0.00	1.99	1.97
gray4b								0.00	1.35
gray5b									0.00

21 | Nora Umbach

Fechnerian Distances

		gray1a	gray2a	gray3a	gray4a	gray5a	gray1b	gray2b	gray4b	gray5b
-	gray1a	0.00	0.12	0.34	0.69	0.94	1.50	0.67	1.61	2.00
	gray2a		0.00	0.22	0.57	0.82	1.62	0.79	1.48	1.99
	gray3a			0.00	0.35	0.60	1.70	1.01	1.26	1.99
	gray4a				0.00	0.25	1.83	1.36	1.12	1.92
	gray5a					0.00	1.93	1.61	0.98	1.92
	gray1b						0.00	0.97	1.99	2.00
	gray2b							0.00	1.99	1.97
	gray4b								0.00	1.35
	gray5b									0.00

Visual representation of distances

22 | Nora Umbach

gray1b	gray2b	gray3b	gray4b	gray5b

UNIVERSITAT TUBINGEN	Color perception	Stimuli	Fechnerian Scaling	Analysis
Stimuli				
gray1a	gray2a	gray3a	gray4a	gray5a

gray5b	gray4b	gray3b	gray2b	gray1b

23 | Nora Umbach

Conclusion

- 1. This is work in progress!
- 2. All conclusions are preliminary

References

46, 352-374.

Dzhafarov, E. N. (2002). Multidimensional Fechnerian Scaling:

Probability-Distance Hypothesis. Journal of Mathematical Psychology,

Gilchrist, A. (2006). Seeing Black and White. Oxford: University Press.

Wallach, H. (1948). Brightness Constancy and the Nature of Achromatic Colors. *Journal of Experimental Psychology*, *38*(3), 310.

Conclusion

UNIVERSITAT

• Fechnerian distances of these stimuli can be arranged in a two-dimensional space

Stimuli

- One of the dimensions could be (perceived) lightness of the infield
- Other dimension? Something like "distinguishability"?

Thank you for your attention!

References

nora.umbach@uni-tuebingen.de

24 Nora Umbach					25 Nora Umbach				
UNIVERSITAT	Thank you	References	Additional slides	Fechnerian Scaling	universitat Tübingen	Thank you	References	Additional slides	Fechnerian Scaling

Additional slides

Fechnerian Scaling

27 | Nora Umbach

Fechnerian Scaling

Analysis

UNIVERSITAT

	gray1a	gray2a	gray3a	gray4a
gray1a	1a	1a2a1a	1a2a3a2a1a	1a2a3a
gray2a	2a1a2a	2a	2a3a2a	2a3a4a
gray3a	3a2a1a2a3a	3a2a3a	3a	3a4a3a
gray4a	4a3a2a1a2a3a4a	4a3a2a3a4a	4a3a4a	4a
gray5a	5a4a3a2a1a2a3a4a5a	5a4a3a2a3a4a5a	5a4a3a4a5a	5a4a5a
gray1b	1b2b1a1b	1b2b1a2a1b	1b2b1a2a3a1b	1b2b1;
gray2b	2b1a2b	2b1a2a1a2b	2b1a2a3a2a1a2b	2b1a2;
gray4b	4b3a2a1a2a3a4a4b	4b3a2a3a4a4b	4b3a4a4b	4b5a4
gray5b	5b1a5b	5b2a5b	5b3a5b	5b4a5
	gray1b	gray2b	gray4b	gray5b
gray1a	1a1b2b1a	1a2b1a	1a2a3a4a4b3a2a1a	1a5b1a
gray2a	2a1b2b1a2a	2a1a2b1a2a	2a3a4a4b3a2a	2a5b2;
gray3a	3a1b2b1a2a3a	3a2a1a2b1a2a3a	3a4a4b3a	3a5b3
gray4a	4a1b2b1a2a3a4a	4a3a2a1a2b1a2a3a4a	4a4b5a4a	4a5b4a
gray5a	5a1b2b1a2a3a4a5a	5a4a3a2a1a2b1a2a3a4a5a	5a4b5a	5a5b5a
gray1b	1b	1b2b1b	1b4b1b	1b5b1
gray2b	2b1b2b	2b	2b4b2b	2b5b2
gray4b	4b1b4b	4b2b4b	4b	4b5b4
gray5b	5b1b5b	5b2b5b	5b4b5b	5b

30 | Nora Umbach

UNIVERSITAT TÜBINGEN

Fechnerian Scaling

gray5a

4a5a4a

4b5a4b

5b5a5b

5a

2b1a2a3a4a3a2a1a2b 2b1a2a3a4a5a4a3a2a1a2b

1a2a3a4a5a4a3a2a1a

2a3a4a5a4a3a2a

1b2b1a2a3a4a5a1b

3a4a5a4a3a

Parameters of psychometric functions (logistic model)

$$F(x) = \frac{1}{1 + \exp\left[-(\beta_0 + \beta_1 x)\right]}$$

Additional slides

Additional slides

4b5a4a4b 5b4a5b

1a2a3a4a3a2a1a

1b2b1a2a3a4a1b

2a3a4a3a2a

• Main diagonal:

Ŧ

$$\beta_0^{(1)} = -19.905, \ \beta_1^{(1)} = 0.343$$

 $\beta_0^{(2)} = 24.067, \ \beta_1^{(2)} = -0.617$

 $\beta_0^{(3)} = -46.180, \ \beta_1^{(3)} = 0.901$

• Secondary diagonal:

 $\beta_0^{(4)} = 48.000, \ \beta_1^{(4)} = -1.147$

References

29 | Nora Umbach

UNIVERSITAT TUBINGEN

Ŷ.

Geodesic loops

Thank you

eberhard karls UNIVERSITAT TUBINGEN	¢,	Thank you	References	Additional slides	Fechnerian Scalir

Parameters of psychometric functions (logistic model)

$$F(x) = \frac{1}{1 + \exp\left[-(\beta_0 + \beta_1 x)\right]}$$

• Main diagonal:

$$\beta_0^{(1)} = -19.905, \ \beta_1^{(1)} = 0.343$$

 $\beta_0^{(2)} = 24.067, \ \beta_1^{(2)} = -0.617$

• Secondary diagonal:

$$\beta_0^{(3)} = -46.180, \ \beta_1^{(3)} = 0.901$$

 $\beta_0^{(4)} = 48.000, \ \beta_1^{(4)} = -1.147$

28 | Nora Umbach

 $\frac{1}{2}$ $\frac{1}$

	grayia	grayza	grayJa	grayta	grayJa	grayin	grayzu	gray40	grayJD
gray1a	195	45	60	45	45	15	15	15	15
gray2a	45	105	150	45	45	15	15	15	15
gray3a	60	60	210	60	150	45	45	45	90
gray4a	45	45	60	105	45	15	15	15	15
gray5a	45	135	60	45	105	15	15	15	15
gray1b	15	15	45	15	15	120	30	30	30
gray2b	15	15	90	15	15	30	75	30	30
gray4b	15	15	45	15	15	30	30	75	30
grav5b	15	15	45	15	15	30	75	30	75

References Additional slides Fechnerian Scaling

S-Index

31 | Nora Umbach

Diagnostic plots MDS

32 | Nora Umbach

Diagnostic plots MDS

Diagnostic plots MDS

EMERHARD KARIS UNIVERSITAT TUBINGEN Thank you	References	Additional slides	Fechnerian Scaling	UNIVERSITAT P UNIVERSITAT Thank you References Additional slides Fechnerian Scaling
				Regular Minimality
Additional slides				 Most fundamental property of discrimination probabilities Only requirement for computation of Fechnerian distances For any x ≠ y
Fechnerian Scaling				$\psi(x,x) < min\{\psi(x,y),\psi(y,x)\}.$
33 Nora Umbach				34 Nora Umbach
UNIVERSITAT TUBINGEN	References	Additional slides	Fechnerian Scaling	UNIVERSITAT TUBINGEN Thank you References Additional slides Fechnerian Scaling
Regular Minimality				Regular Minimality

- Most fundamental property of discrimination probabilities
- Only requirement for computation of Fechnerian distances
- For any $x \neq y$

$$\psi(x,x) < \min\{\psi(x,y),\psi(y,x)\}$$

• Example for discrete object set

Regular Minimality

- Most fundamental property of discrimination probabilities
- Only requirement for computation of Fechnerian distances
- For any $x \neq y$

$$\psi(x,x) < \min\{\psi(x,y),\psi(y,x)\}.$$

• Example for discrete object set

	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>Y</i> 4
<i>x</i> ₁	0.5	0.7	1.0	1.0
<i>x</i> ₂	1.0	0.5	1.0	0.6
<i>x</i> 3	0.9	0.9	0.8	0.1
<i>x</i> 4	0.6	0.6	0.1	0.8

UNIVERSITAT

```
\psi(x,x) < \min\{\psi(x,y),\psi(y,x)\}.
```

• Most fundamental property of discrimination probabilities

• Only requirement for computation of Fechnerian distances

• Example for discrete object set

	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>Y</i> 4
<i>x</i> ₁	0.5	0.7	1.0	1.0
<i>x</i> ₂	1.0	0.5	1.0	0.6
<i>x</i> 3	0.9	0.9	0.8	0.1
<i>x</i> 4	0.6	0.6	0.1	0.8

Thank you

Regular Minimality

34 | Nora Umbach

eberhard karls UNIVERSITAT TUBINGEN	*	Thank you	References	Additional slides	Fechnerian Scaling

Psychometric Increments

• We define psychometric increments for each observation area

$$\phi^{(1)} = \psi(x, y) - \psi(x, x)$$

$$\phi^{(2)} = \psi(y, x) - \psi(x, x)$$

- Due to regular minimality all psychometric increments are positive
- Minima ψ(x, x) can have different values (nonconstant self-dissimilarity)

Regular Minimality

- Most fundamental property of discrimination probabilities
- Only requirement for computation of Fechnerian distances
- For any $x \neq y$

$$\psi(x,x) < \min\{\psi(x,y),\psi(y,x)\}$$

Additional slides

• Example for discrete object set

		<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4
>	×1	0.5	0.7	1.0	1.0
>	×2	1.0	0.5	1.0	0.6
,	x3	0.9	0.9	0.8	0.1
>	X4	0.6	0.6	0.1	0.8

34 | Nora Umbach

Discrete Object Space

In a discrete space Fechnerian computations are performed by taking sums of psychometric increments for all possible chains leading from one point to another (3 examples shown here).

References

Fechnerian Scaling

Additional slides

Fechnerian Scaling

- Consider a chain from s_i to s_j , with $k \ge 2$
- Psychometric length of the first kind

$$L^{(1)}(x_1, x_2, ..., x_k) = \sum_{m=1}^k \phi^{(1)}(x_m, x_{m+1})$$

- Finite number of psychometric lengths across all possible chains connecting *s_i* and *s_i*
- Oriented Fechnerian distance:

$$G_1(s_i, s_j) = L_{min}^{(1)}(s_i, s_j)$$

- Satisfies all properties of a metric except symmetry
- Oriented distances are not computed across observation areas but rather within observation areas

37 | Nora Umbach

Fechnerian Distance

- For better interpretation we add up all oriented Fechnerian distances from *s_i* to *s_i* and from *s_i* to *s_i*
- Overall Fechnerian distance

$$G(s_i, s_j) = G_1(s_i, s_j) + G_1(s_j, s_i) = G_2(s_i, s_j) + G_2(s_j, s_i)$$

- Satisfies all properties of a metric
- Does not depend on observation area
- Gives us a readily interpretable measure of the 'subjective' distance between *s_i* and *s_j*

38 | Nora Umbach