Hidden Markov Models DepmixS4 Examples Conclusions

depmixS4: an R-package for hidden Markov models

Ingmar Visser¹ & Maarten Speekenbrink²

¹Department of Psychology University of Amsterdam

²Department of Psychology University College London

Psychometric Computing, February 2011, Tuebingen

depmix

UVA UNIVERSITEIT VAN AMSTERDAM

Hidden Markov Models DepmixS4 Examples Conclusions

Outline

Hidden Markov Models

DepmixS4

Examples

Speed-accuracy trade-off Dynamic Change Card Sorting

UVA 💐 Universiteit van Amsterdam

Hidden Markov Models DepmixS4 Examples Conclusions

Example model

- S_1, S_2, \ldots : discrete states (latent or hidden)
- ▶ *O*₁₁, *O*₂₁, *O*₁₂, ...: observations (yes/no, RT, ...)
- For example: O_{11} , O_{21} are items on a balance scale task
- States represent different strategies that change through learning
 UVA UNIVERSITEIT VAN AMSTERDAM

Dependency between S and O forms the measurement

model

Dependency between C's former the dynamic part of the

depmix

Dependent mixture model formulation

- 1. $S_t = \mathbf{A}S_{t-1} + \xi_t$, **A**, a transition matrix
- 2. $O_t = \mathbf{B}(S_t) + \zeta_t, \mathbf{B}$, an observation density
- 3. $Pr(S_t|S_{t-1},\ldots,S_1) = Pr(S_t|S_{t-1})$ (Markov assumption)

UVA 関 UNIVERSITEIT VAN AMSTERDAM

depmix

Hidden Markov Models DepmixS4 Examples Conclusions

Likelihood

$$Pr(\mathbf{O}_1,\ldots,\mathbf{O}_T) = \sum_q \prod_{t=1}^T Pr(\mathbf{O}_t|S_t,\mathbf{A},\mathbf{B})$$

q an arbitrary hidden state sequence

- q: an enumeration of all possible state sequences (n^T)
- Leave out the sum over q (S_t known): complete data likelihood
- Note: likelihood is not computed directly (impractical for large T)

depmix

depmix

UVA UNIVERSITEIT VAN AMSTERDAM

Relationship to other models

- 1. Latent Markov model
- 2. Dependent Mixture model
- 3. Bayesian network (with latent variables)
- 4. State-space model (discrete)
- 5. Symbolic dynamic model
- 6. Regime switching models

7. ...

Hidden Markov Models Depmix54 Examples Conclusions

Why do we need them?

- 1. Piagetian development, conservation, balance scale
- 2. Concept identification learning
- 3. Strategy switching: Speed-accuracy trade-off
- 4. Iowa Gambling task
- 5. Weather Prediction task
- 6. Climate change

[Jansen and Van der Maas, 2002]

[Schmittmann et al., 2006]

STERDAM

depmix

DepmixS4

- ► R-package
- depmixS4 fits dependent mixture models
- mixture components are generalized linear models (and others ...)
- Markov dependency between components

In short: depmixS4 fits hidden Markov models of generalized linear models in both large N, small T as well as N=1, T large samples.

[Visser and Speekenbrink, 2010]

UvA 💐	UNIVERSITEIT VAN AMSTERDAM
-------	----------------------------

UVA UNIVERSITEIT VAN AMSTERDAM

Hidden Markov Models DepmixS4 Examples Conclusions

Transition & initial model

Each row of the transition matrix and the initial state probabilities:

- is modeled as a multinomial distribution
- uses the logistic link function to include covariates
- can have time-dependent covariates

Hidden Markov Models	
DepmixS4	
Examples	
Conclusions	

Optimization

depmixS4 **uses**:

- EM algorithm (interface to glm functions in R)
- Direct optimization of the raw data log likelihood for fitting contrained models (using Rsolnp)

Response models

Current options for the response models are models from the generalized linear modeling framework, and some additional distributions.

From glm:

- normal distribution; continuous, gaussian data
- binomial (logit, probit); binary data
- Poisson (log); count data
- gamma distribution

Additional distributions:

- multinomial (logistic or identity link); multiple choice data
- multivariate normal
- exgaus distribution (from the gamlss package); response time data
 UNIVERSITEIT VAN AMSTERDAM
- it is easy to add new response distributions

depmix

Hidden Markov Models DepmixS4 **Examples** Conclusions

S4 Speed-accuracy trade-off les Dynamic Change Card So

Speed-accuracy: data

- Three blocks with N=168,134,137 trials (first block shown)
- Speeded reaction time task
- Speed and accuracy manipulated by reward variable
- Question: is there a single (linear) relationship between responses and covariate or switching between regimes?

UVA 🙀 Universiteit van Amsterdam

Speed-accuracy: linear model predictions

Hidden Markov Models Depmix54 Speed-accuracy trade-off Examples Conclusions

Speed-accuracy: two-state model

- FG=fast guessing
- SC=stimulus controlled
- Response times also modeled
- Pay-off for accuracy as covariate on the transition probabilities

	depmix
Hidden Markov Models DepmixS4 Examples Conclusions	Speed-accuracy trade-off Dynamic Change Card Sorting

UVA 関 UNIVERSITEIT VAN AMSTERDAM

UVA 関 UNIVERSITEIT VAN AMSTERDAM

Speed-accuracy: two-state model

Fitting this in depmixS4:

mod1 <- depmix(list(rt~1,corr~1),</pre>

- + data=speed, transition=~Pacc, nstates=2,
- + family=list(gaussian(), multinomial("identity")),
- + ntimes=c(168,134,137))

fm1 <- fit(mod1)</pre>

Hidden Markov Models DepmixS4 Speed-accuracy trade-off Examples Dynamic Change Card Sorting

depmix

Speed-accuracy: switching model

UVA 関 UNIVERSITEIT VAN AMSTERDAM

Speed-accuracy: transition probabilities

Hidden Markov Models

- transition probabilities as function of covariate
- hysteresis: asymmetry between switching from FG to SC and vice versa
 UN UNIVERSITIET VAN AMSTERIAM

depmix

Hidden Markov Models DepmixS4 Examples Conclusions

What is DCCS?

- task 1: sort by color
- task 2: sort by shape
- measures: ability to switch/flexibility

UvA 😃	UNIVERSITEIT VAN AMSTERDAM

Hidden Markov Models DepmixS4 Speed-accuracy trade-off Examples Conclusions

DCCS: data

- data consists of 6 trials (task 2)
- traditional analyses:
 - 1. 0/1 correct: perseveration
 - 2. 5/6 correct: switching

depmix

DCCS: research questions

- can we characterize the remaining group?
- are there children in transition, shifting from one strategy to another?
- alternative: are they simply guessing?

UVA 🙀 UNIVERSITEIT VAN AMSTERDAM

Hidden Markov Models DepmixS4 Speed-accuracy trade-off Examples Dynamic Change Card Sorting

DCCS: theory

- cusp model predicts instability in the transitional phase
- shifting back and forth between 'strategies'
- hysteresis: assymetry in transition probabilities

UVA 関 UNIVERSITEIT VAN AMSTERDAM

dden Markov Models DepmixS4 Examples

Speed-accuracy trade-off Dynamic Change Card Sorting

DCCS: results

- P: perseveration state
- S: switch state
- transition P->S much larger than transition S->P
- this model better than a model without transitions

M UV ERSTETT VAN AMSTERIUM deprnix Hidden Markov Models DeprnixS4 Examples Conclusions

Other applications

- Climate change data
- Learning on the Iowa Gambling Task
- Balance scale task
- Categorization learning

 30 to 40 % of 3/4 year olds are in the transitional phase, shifting between strategies

DCCS: results

depmix

Dynamic Change Card Sorting

Hidden Markov Models

DepmixS4 Examples

Hidden Markov Models DepmixS4 Categorization I Examples Balance scale Conclusions

Take home messages

- depmixS4 can be downloaded from: http://r-forge.r-project.org/depmix/ or from CRAN
- Also models with transient and absorbing states
- Easy to add your own favorite distribution
- Paper in Journal of Statistical Software: depmixS4: An R-package for Hidden Markov Models
- This is not a psychometrics package, rather a psychodynamics package

Thanks

- Thanks to Han van der Maas for the speed-accuracy data
- Thanks to Bianca Beersma for the DCCS data (paper in press!)
- Happy mixing!

UVA 🙀 Universiteit van Amsterdam	Uva 💇 Universiteit van Amsterd
depmix	depmix
Hidden Markov Models DepmixS4 Categorization learning Examples Balance scale Conclusions	Hidden Markov Models DepmixS4 Categorization learning Examples Balance scale Conclusions
Dutilh, G., Wagenmakers, EJ., Visser, I., and van der Maas, H. L. J. (2011).	Future developments
 A phase transition model for the speed–accuracy trade–off in response time experiments. <i>Cognitive Science.</i> Jansen, B. R. J. and Van der Maas, H. L. J. (2002). The development of children's rule use on the balance scale task. <i>Journal of Experimental Child Psychology</i>, 81(4):383–416. Schmittmann, V. D., Visser, I., and Raijmakers, M. E. J. (2006). Multiple learning modes in the development of rule-based category-learning task performance. <i>Neuropsychologia</i>, 44(11):2079–2091. Visser, I., Raijmakers, M. E. J., and Van der Maas, H. L. J. (2009). Hidden markov models for individual time series. In Valsiner, J., Molenaar, P. C. M., Lyra, M. C. D. P., and Chaudhary, N., editors, <i>Dynamic Process</i> 	 richer measurement models, eg factor models, AR models etc richer transition models, eg continuous time measurement occasions explicit state durations
Methodology in the Social and Developmental Sciences, chapter 13, pages 269–289. Springer, New York. Visser, I. and Speekenbrink, M. (2010). depmixS4: An R-package for hidden Markov models. Journal of Statistical Software, 36(7):1–21. R package, current version available from CRAN.	 identifiability of models model selection
	Liu M Lingerger in Avera

Hidden Markov Models Deprnix54 Categorization learning Examples Balance scale Conclusions

Experiment

- categorization learning experiment
- 32 learning blocks with feedback
- ► 5 transfer blocks without feedback

Research questions:

- 1. detect different patterns of generalization (rule-based vs. exemplar-based)
- 2. study representational shifts in learning: does representational format change with learning?

Data: transfer trials

Hidden Markov Model

DepmixS4

Examples

Conclusions

UVA 🙀 UNIVERSITEIT VAN AMSTERDAM

depmix

Categorization learning

Hidden Markov Models DepmixS4 Examples Conclusions

Categorization learning Balance scale

depmix

Model specification

- 3 states representing Rule 1, Rule 2 and Exemplar based responding
- models with 2 to 5 states were fitted
- model selection by BIC

UVA 関 UNIVERSITEIT VAN AMSTERDAM

Results (1)

- the selected model has another state corresponding to guessing behavior
- the model includes a covariate on the probability 'correct' in the exemplar state
- this tests the assumption that consistency of applying this strategy increases with training

Hidden Markov Models Depmix54 Examples Balance scale Conclusions

Results (2)

- 4 states representing Rule 1 (AABBB), Rule 2 (BBABA), Exemplar (ABBBA), and guessing
- covariate of block number on probability 'correct' in the exemplar state (increasing consistency)

Results (3)

- Exemplar state is absorbing
- Transitions occur mostly from Res to R1 and R2 and from rule states to the Exemplar state

	Tra	ties		
State	Е	R1	R2	Res
Е	1.00	0.00	0.00	0.00
R1	0.02	0.91	0.03	0.04
R2	0.11	0.00	0.89	0.00
Res	0.09	0.06	0.07	0.78

Categorization learning

depmix

Hidden Markov Models DepmixS4 Examples Conclusions

4 Categorization learning s Balance scale

Results (4)

- Posterior assignment of responses to states
- Response times for the rule based versus exemplar based strategies over training
- Results indicate that exemplar based responding is an expression of automatization

depmix

Results (5)

- Automatization should result in a power law of learning
- Mean and sd have identical coefficients

Hidden Markov Models DepmixS4 Categorization le Examples Balance scale Conclusions

Data

- 5 distance items on the balance scale task
- ► age as covariate
- items scored binary

Data provided by Brenda Jansen (Jansen & Van der Maas, 2002)

UVA 🙀 Universiteit van Amsterdam

Hidden Markov Models DepmixS4 Categorization learning Examples Balance scale Conclusions

Model

3-class model with age as covariate on the class proportions

depmix

Class probabilities as function of age

depmix