Bias reduction in the estimation of Rasch models

Rasch Models

• Independent Bernoulli responses in a subject-item arrangement: Y_{is} is the outcome of the *s*th subject on the *i*th item.

Rasch Models

• $\pi_{is} = P(Y_{is} = 1)$: the probability that sth subject succeeds on the *i*th item, (i = 1, ..., I; s = 1, ..., S).

• The 1PL Rasch model: (a special logistic regression model)

Bias reduction

Application

$$\log \frac{\pi_{is}}{1-\pi_{is}} = \eta_{is} = \alpha_i + \gamma_s \quad (i = 1, \dots, I; s = 1, \dots, S),$$

where α_i , γ_s are uknown model parameters, and η_{is} the predictor for the 1PL model.

- Parameter vector: $\theta = (\alpha_1, \ldots, \alpha_I, \gamma_1, \ldots, \gamma_S)^T$,
- Parameter interpretation:
 - α_i (or $-\alpha_i$): measure of the "ease" (or "difficulty") of the *i*th item,
 - γ_s : the "ability" of the sth subject.

Two-parameter logistic regression

Maximum

Rasch Models

• The 2PL Rasch model:

$$\log \frac{\pi_{is}}{1 - \pi_{is}} = \tilde{\eta}_{is} = \alpha_i + \beta_i \gamma_s \quad (i = 1, \dots, I; s = 1, \dots, S)$$

Parameterization

Application

where β_i is a "discrimination" parameter for the $i {\rm th}$ item, and $\tilde{\eta}_{is}$ the predictor for the 2PL model.

• Parameter vector: $\tilde{\theta} = (\alpha_1, \dots, \alpha_I, \beta_1, \dots, \beta_I, \gamma_1, \dots, \gamma_S)^T$.

Bias reduction

• The larger $|\beta_i|$ is the steeper is the Item-Response Function (IRF) (the map from γ_s to π_{is}).

1PL model: 5 subjects - 3 items

Maximum likelihood estimation

Rasch Models

Advantages

Maxi

000

 $\rightarrow~$ ML estimation is straighforward using generic tools (e.g. gnm uses a quasi Newton-Raphon iteration).

Bias reduction

Parameterization

Referen

 $\rightarrow\,$ Generic inferential procedures (LR tests, likelihood-based confidence intervals).

Maximum likelihood estimation - Issues

Maximum likelihood estimation

- Useful asymptotic frameworks (e.g. information grows with the number of subjects or number of items):
 - \rightarrow Full maximum likelihood generally delivers inconsistent estimates. (Andersen, 1980, Chapter 6)

Bias reduction

- $\rightarrow\,$ Loss of performance (e.g. coverage) of tests, confidence intervals.
- \rightarrow (Partial) Solutions: Conditional likelihoods, integrated likelihoods, modified profile likelihoods
 - $\rightarrow\,$ can be hard to apply for 2PL due to nonlinearity.

Maximum likelihood estimation - Issues

Maximum likelihood estimation

000

- As with many models for binomial responses, there is positive probability of boundary ML estimates.
 - $\rightarrow~$ Numerical issues in estimation.
 - $\rightarrow\,$ Problems with asymptotic inference (e.g. Wald-based inferences).
- Add small constants to the responses in the spirit of Haldane (1955) (?)

Rasch Models 0000	Maximum likelihood estimation	Bias reduction		Application	Discussion	References	Rasch Models 0000	Maximum likelihood estimation	Bias reduction	Parameterization	Application	Discussion	References
Adjusted score fur	actions						Adjusted score fur	nctions					
Bias-reducing adjusted score functions						Bias-re	ducing adjuste	d score fi	unctions				

• Firth (1993): appropriate adjustment $A(\theta)$ to the score vector for getting estimators with smaller asymptotic bias than ML:

$$\nabla_{\theta} l(\theta) + A(\theta) = 0.$$

- Applicable to models where the infromation on the parameters increases with the number of observations (dim θ is independent of the number of observations).
 - $\rightarrow\,$ Not the case for Rasch models under useful asymptotic frameworks.
 - $\rightarrow~$ But expect less-biased estimators than ML.

- \rightarrow In binomial/multinomial response GLMs, the reduced-bias estimates have been found to be always finite (Heinze and Schemper 2002; Bull et al. 2002; Zorn 2005; Kosmidis 2009)
- \rightarrow Easy implementation:
 - Iterative bias correction (Kosmidis and Firth 2010)
 - Iterated ML fits on pseudo-data (Kosmidis and Firth 2011)

Adjusted score functions

00000

Adjusted score equations for 1PL

Adjusted score equations for 1PL (Firth 1993, logistic regressions)

$$0 = \sum_{i=1}^{I} \sum_{s=1}^{S} \left(y_{is} + \frac{1}{2} h_{is} + (1+h_{is})\pi_{is} \right) z_{ist} \quad (t = 1, \dots, I+S),$$

where

- $z_{ist} = \partial \eta_{is} / \partial \theta_t$ is the (s,t)th element of the $S \times (I+S)$ matrix Z_i ,
- h_{is} is the sth diagonal element of $H_i = Z_i F^{-1} Z_i^T \Sigma_r$ ("hat value" for the (i, s)th observation),
- $F = \sum_{i=1}^{T} Z_i^T \Sigma_i Z_i$ (the Fisher information),
- $\Sigma_i = \operatorname{diag} \{ v_{i1}, \ldots, v_{iS} \}, v_{is} = \operatorname{var}(Y_{is})$

Adjusted score equations for 1PL

Adjusted score equations for 1PL (Firth 1993, logistic regressions)

$$0 = \sum_{i=1}^{I} \sum_{s=1}^{S} \left(y_{is} + \frac{1}{2} h_{is} + (1+h_{is})\pi_{is} \right) z_{ist} \quad (t = 1, \dots, I+S),$$

where

- $z_{ist} = \partial \eta_{is} / \partial \theta_t$ is the (s, t)th element of the $S \times (I + S)$ matrix Z_i ,
- h_{is} is the sth diagonal element of $H_i = Z_i F^{-1} Z_i^T \Sigma_r$ ("hat value" for the (i, s)th observation),
- $F = \sum_{i=1}^{T} Z_i^T \Sigma_i Z_i$ (the Fisher information),
- $\Sigma_i = \operatorname{diag} \{ v_{i1}, \ldots, v_{iS} \}, v_{is} = \operatorname{var}(Y_{is})$

Rasch Models	Maximum likelihood estimation	Bias reduction	Parameterization	Application	Discussion	References
0000	000	00000000000				
Adjusted score fund	tions					

Adjusted score equations for 2PL

Adjusted score equations for 2PL (Kosmidis and Firth 2009, GNN	Ms)
$0 = \sum_{i=1}^{I} \sum_{s=1}^{S} \left(y_{is} + \frac{1}{2} \tilde{h}_{is} + (1 + \tilde{h}_{is}) \pi_{is} + c_{is} v_{is} \right) \tilde{z}_{ist} (t = 1, \dots$	$\dots, 2I{+}S)$

where

- $\tilde{z}_{ist} = \partial \tilde{\eta}_{is} / \partial \tilde{\theta}_t$ is the (s, t)th element of the $S \times (2I + S)$ matrix \tilde{Z}_i ,
- \tilde{h}_{is} is the "hat value" for the (i,s)th observation,
- $\tilde{F} = \sum_{i=1}^{T} \tilde{Z}_i^T \Sigma_i \tilde{Z}_i$,
- $\Sigma_i = \text{diag} \{ v_{i1}, \dots, v_{iS} \}, v_{is} = \text{var}(Y_{is}) = \pi_{is}(1 \pi_{is}),$
- c_{is} is the asymptotic covariance of the ML estimators of β_i and γ_s (from the components of \tilde{F}^{-1}).

Rasch Models 0000	Maximum likelihood estimation	Bias reduction	Parameterization	Application	Discussion	References
Adjusted score functi	ons					

Adjusted score equations for 2PL

- $\Sigma_i = \text{diag} \{ v_{i1}, \dots, v_{iS} \}$, $v_{is} = \text{var}(Y_{is}) = \pi_{is}(1 \pi_{is})$,
- c_{is} is the asymptotic covariance of the ML estimators of β_i and γ_s (from the components of \tilde{F}^{-1}).

eudo da	ata			Pseudo d	ata					
estir		depend on the parameters th e formally the ML estimator o		esti		depend on the e formally the	•			iS
Model	Pseudo-data			Model	Pseudo-data	I				
1PL	Responses: Totals:	$y^* = y + h/2$ $m^* = 1 + h$		1PL	Responses: Totals:	$y^* = y + h/2$ $m^* = 1 + h$				
2PL	Responses: Totals:	$\tilde{y}^* = y + \tilde{h}/2 + c\pi(1-\pi)$ $\tilde{m}^* = 1 + \tilde{h}$		2PL		$\begin{split} \tilde{y}^* &= y + \tilde{h}/2\\ \tilde{m}^* &= 1 + \tilde{h} + \end{split}$))		
						lation of the ac $_E = 1$ if E hold		to ensure		
lodels Max OO ML fits on pseud		n Bias reduction Parameterization	Application Discussion References		aximum likelihood estimatio 00 do-data	on Bias reduction	Parameterization	Application	Discussion	F
atad N	Al fits on	pseudo data		Iterated N	ML fits on	nseudo da	ta			

• The adjusted score equations can be solved as follows.

Iterated ML fits on pseudo data

At each iteration

- Update the values of the pseudo data.
- **②** Use ML to fit the Rasch model on the current value of the pseudo data.
- Repeat until the changes to the estimates are small.
 - Ingredients: standard ML software, routines for extracting the hat values and Fisher information.
- \rightarrow gnm and the methods hatvalues, vcov for gnm objects can do this

• tempFit: a gnm object in identifiable parameterization, pseudoData: function that evaluates the pseudo data at the supplied fit — y^* and m^* depend on the parameters only through the "working weights" $\pi_{is}(1 - \pi_{is})$.

Rescale working weights:
<pre>tempFit\$weights <- with(tempFit, weights/prior.weights)</pre>
Evaluate pseudo data
currentData <- pseudoData(tempFit)
Fit model at the current pseudo data
<pre>tempFit <- update(tempFit, ys/ms ~ ., weights = ms,</pre>
data = currentData)

• 1PL model:		Rasch Models 0000	Maximum likelihood estimation 000	Bias reduction 000000000	Parameterization	Application	Discussion	References	Rasch Models 0000	Maximum likelihood estimation 000	Bias reduction	Parameterization	Application	Discussion	References
	$\log \frac{\pi_{is}}{1} = \eta_{is} = \alpha_i + \gamma_s (i = 1, \dots, I; s = 1, \dots, S),$ • 2PL model:	Identifi	ability						Identifi	ability					
	$\log \frac{\pi_{is}}{1} = \eta_{is} = \alpha_i + \gamma_s (i = 1, \dots, I; s = 1, \dots, S),$ • 2PL model:														
	$\log \frac{\pi_{is}}{1} = \eta_{is} = \alpha_i + \gamma_s (i = 1, \dots, I; s = 1, \dots, S),$ • 2PL model:														
	$\log \frac{1}{1+\gamma_s} = \eta_{is} = \alpha_i + \gamma_s (i = 1, \dots, I; s = 1, \dots, S),$	۰	1PL model:												

• Fix location of α 's or location of γ 's (only I + S - 1 parameters can • Fix location of α 's and scale of β 's *or* location and scale of γ 's (only 2I + S - 2 parameters can be estimated).

Example: Scaling of legislators

be estimated).

Data:

• US House of Representatives, 20 roll calls selected by Americans for Democratic Action

• Reduced-bias estimator is equivariant to ordinary constrasts (bias is

equivariant in the group of affine transformations).

- About 300 of 439 members voted on 10 or more of the 20 issues
- In gnm as dataset House2001; data kindly supplied by Jan deLeeuw, used in deLeeuw (2006, CSDA).
- Aim here is to place the members on a 'liberality' scale

?House2001 in the gnm package uses an ad hoc (constant) data adjustment to achieve finite estimates for all 300 members. The method proposed in this talk is rather more principled!

members

Intervals based on quasi standard errors

Rasch Models	Maximum likelihood estimation	Bias reduction	Parameterization	Application	Discussion	References
0000	000	0000000000				

This is very much work in progress!

The method described here yields more sensible results than either *MLE* or *constant* data-adjustment.

Computationally convenient.

But still it is *inconsistent* (e.g., as the number of items increases).

Aim of current work is to generalize fully the penalization approach of Firth (1993) to situations like this, where the number of 'nuisance' parameters increases with n.

- Bull, S. B., C. Mak, and C. Greenwood (2002). A modified score function estimator for multinomial logistic regression in small samples. *Computational Statistics and Data Analysis 39*, 57–74.
- Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80(1), 27-38.
- Firth, D. and R. X. de Menezes (2004). Quasi-variances. Biometrika 91(1), 65-80.
- Haldane, J. (1955). The estimation of the logarithm of a ratio of frequencies. *Annals of Human Genetics* 20, 309–311.
- Heinze, G. and M. Schemper (2002). A solution to the problem of separation in logistic regression. *Statistics in Medicine 21*, 2409–2419.
- Kosmidis, I. (2009). On iterative adjustment of responses for the reduction of bias in binary regression models. Technical Report 09-36, CRiSM working paper series.
- Kosmidis, I. and D. Firth (2009). Bias reduction in exponential family nonlinear models. *Biometrika* 96(4), 793–804.
- Kosmidis, I. and D. Firth (2010). A generic algorithm for reducing bias in parametric estimation. *Electronic Journal of Statistics 4*, 1097–1112.
- Kosmidis, I. and D. Firth (2011). Multinomial logit bias reduction via the poisson log-linear model. Biometrika 98(3), 755–759.
- Zorn, C. (2005). A solution to separation in binary response models. *Political Analysis 13*, 157–170.