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Rasch models

Independent Bernoulli responses in a subject-item arrangement:
Yis is the outcome of the sth subject on the ith item.

πis = P (Yis = 1): the probability that sth subject succeeds on the
ith item, (i = 1, . . . , I; s = 1, . . . , S).
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One-parameter logistic regression

1PL model

The 1PL Rasch model: (a special logistic regression model)

log
πis

1− πis
= ηis = αi + γs (i = 1, . . . , I; s = 1, . . . , S) ,

where αi, γs are uknown model parameters, and ηis the predictor for
the 1PL model.

Parameter vector: θ = (α1, . . . , αI , γ1, . . . , γS)T ,

Parameter interpretation:
αi (or −αi): measure of the “ease” (or “difficulty”) of the ith item,
γs: the “ability” of the sth subject.
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Two-parameter logistic regression

2PL model

The 2PL Rasch model:

log
πis

1− πis
= η̃is = αi + βiγs (i = 1, . . . , I; s = 1, . . . , S) ,

where βi is a “discrimination” parameter for the ith item, and η̃is
the predictor for the 2PL model.

Parameter vector: θ̃ = (α1, . . . , αI , β1, . . . , βI , γ1, . . . , γS)T .

The larger |βi| is the steeper is the Item-Response Function (IRF)
(the map from γs to πis).

2PL model: 5 subjects - 3 items
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1PL model: 5 subjects - 3 items
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Advantages

Maximum likelihood estimation

→ ML estimation is straighforward using generic tools (e.g. gnm uses a
quasi Newton-Raphon iteration).

→ Generic inferential procedures (LR tests, likelihood-based confidence
intervals).
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Issues

Maximum likelihood estimation - Issues

Useful asymptotic frameworks (e.g. information grows with the
number of subjects or number of items):
→ Full maximum likelihood generally delivers inconsistent
estimates. (Andersen, 1980, Chapter 6)
→ Loss of performance (e.g. coverage) of tests, confidence
intervals.

→ (Partial) Solutions: Conditional likelihoods, integrated likelihoods,
modified profile likelihoods
→ can be hard to apply for 2PL due to nonlinearity.
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Issues

Maximum likelihood estimation - Issues

As with many models for binomial responses, there is positive
probability of boundary ML estimates.
→ Numerical issues in estimation.
→ Problems with asymptotic inference (e.g. Wald-based
inferences).

→ Add small constants to the responses in the spirit of Haldane (1955)
(?)
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Adjusted score functions

Bias-reducing adjusted score functions

Firth (1993): appropriate adjustment A(θ) to the score vector for
getting estimators with smaller asymptotic bias than ML:

∇θl(θ) +A(θ) = 0 .

Applicable to models where the infromation on the parameters
increases with the number of observations (dim θ is independent of
the number of observations).
→ Not the case for Rasch models under useful asymptotic
frameworks.
→ But expect less-biased estimators than ML.
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Adjusted score functions

Bias-reducing adjusted score functions

→ In binomial/multinomial response GLMs, the reduced-bias estimates
have been found to be always finite (Heinze and Schemper 2002;
Bull et al. 2002; Zorn 2005; Kosmidis 2009)

→ Easy implementation:
Iterative bias correction (Kosmidis and Firth 2010)
Iterated ML fits on pseudo-data (Kosmidis and Firth 2011)
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Adjusted score functions

Adjusted score equations for 1PL

Adjusted score equations for 1PL (Firth 1993, logistic regressions)

0 =
I∑

i=1

S∑

s=1

(
yis +

1

2
his + (1 + his)πis

)
zist (t = 1, . . . , I + S) ,

where
zist = ∂ηis/∂θt is the (s, t)th element of the S × (I + S) matrix Zi,

his is the sth diagonal element of Hi = ZiF
−1ZTi Σr (“hat value”

for the (i, s)th observation),

F =
∑T
i=1 Z

T
i ΣiZi (the Fisher information),

Σi = diag {vi1, . . . , viS}, vis = var(Yis)
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Adjusted score functions

Adjusted score equations for 2PL

Adjusted score equations for 2PL (Kosmidis and Firth 2009, GNMs)

0 =
I∑

i=1

S∑

s=1

(
yis +

1

2
h̃is + (1 + h̃is)πis + cisvis

)
z̃ist (t = 1, . . . , 2I+S) ,

where
z̃ist = ∂η̃is/∂θ̃t is the (s, t)th element of the S× (2I+S) matrix Z̃i,

h̃is is the “hat value” for the (i, s)th observation,

F̃ =
∑T
i=1 Z̃

T
i ΣiZ̃i,

Σi = diag {vi1, . . . , viS}, vis = var(Yis) = πis(1− πis),

cis is the asymptotic covariance of the ML estimators of βi and γs
(from the components of F̃−1).
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Iterated ML fits on pseudo-data

Pseudo data

→ If h and h̃ did not depend on the parameters then the reduced-bias
estimator would be formally the ML estimator on Binomial
pseudo-data.

Model Pseudo-data

1PL
Responses: y∗ = y + h/2
Totals: m∗ = 1 + h

2PL
Responses: ỹ∗ = y + h̃/2 + cπ(1− π)

Totals: m̃∗ = 1 + h̃

* via algebraic manipulation of the adjusted scores to ensure
0 ≤ y∗ ≤ m∗. Here, 1E = 1 if E holds.
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Iterated ML fits on pseudo-data

Pseudo data

→ If h and h̃ did not depend on the parameters then the reduced-bias
estimator would be formally the ML estimator on Binomial
pseudo-data.

Model Pseudo-data

1PL
Responses: y∗ = y + h/2
Totals: m∗ = 1 + h

2PL
Responses: ỹ∗ = y + h̃/2 + cπ1(c>0)

Totals: m̃∗ = 1 + h̃+ c(π − 1(c<0))

* via algebraic manipulation of the adjusted scores to ensure
0 ≤ y∗ ≤ m∗. Here, 1E = 1 if E holds.
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Iterated ML fits on pseudo-data

Iterated ML fits on pseudo data

The adjusted score equations can be solved as follows.

Iterated ML fits on pseudo data

At each iteration

1 Update the values of the pseudo data.

2 Use ML to fit the Rasch model on the current value of the pseudo data.

Repeat until the changes to the estimates are small.

Ingredients: standard ML software, routines for extracting the hat
values and Fisher information.

→ gnm and the methods hatvalues, vcov for gnm objects can do this
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Iterated ML fits on pseudo-data

Iterated ML fits on pseudo data

tempFit: a gnm object in identifiable parameterization,
pseudoData: function that evaluates the pseudo data at the
supplied fit — y∗ and m∗ depend on the parameters only through
the “working weights” πis(1− πis).

## Rescale working weights:

tempFit$weights <- with(tempFit, weights/prior.weights)

## Evaluate pseudo data

currentData <- pseudoData(tempFit)

## Fit model at the current pseudo data

tempFit <- update(tempFit, ys/ms ~ ., weights = ms,

data = currentData)
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Identifiability

1PL model:

log
πis

1− πis
= ηis = αi + γs (i = 1, . . . , I; s = 1, . . . , S) ,

Fix location of α’s or location of γ’s (only I + S − 1 parameters can
be estimated).

Reduced-bias estimator is equivariant to ordinary constrasts (bias is
equivariant in the group of affine transformations).
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Identifiability

2PL model:

log
πis

1− πis
= ηis = αi + βiγs (i = 1, . . . , I; s = 1, . . . , S) ,

Fix location of α’s and scale of β’s or location and scale of γ’s (only
2I + S − 2 parameters can be estimated).
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Example: Scaling of legislators

Data:

US House of Representatives, 20 roll calls selected by Americans for
Democratic Action

About 300 of 439 members voted on 10 or more of the 20 issues

In gnm as dataset House2001; data kindly supplied by Jan deLeeuw,
used in deLeeuw (2006, CSDA).

Aim here is to place the members on a ‘liberality’ scale

?House2001 in the gnm package uses an ad hoc (constant) data
adjustment to achieve finite estimates for all 300 members. The method
proposed in this talk is rather more principled!
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This is very much work in progress!

The method described here yields more sensible results than either MLE
or constant data-adjustment.

Computationally convenient.

But still it is inconsistent (e.g., as the number of items increases).

Aim of current work is to generalize fully the penalization approach of
Firth (1993) to situations like this, where the number of ‘nuisance’
parameters increases with n.
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