Outline

David Firth ${ }^{1}$

d.firth@warwick.ac.uk

loannis Kosmidis ${ }^{21}$

i.kosmidis@ucl.ac.uk

Heather Turner ${ }^{1}$
ht@heatherturner.net
${ }^{1}$ Department of Statistics, University of Warwick
${ }^{2}$ Department of Statistical Science,
University College London

Psychoco, 2012

Rasch Models 0000	Maximum likelihood estimation 000	Bias reduction 0000000000	Parameterization	Application	Discussion	References	Rasch Models - 000	Maximum likelihood estimation 000	Bias reduction 0000000000
							One-parameter logistic regression		
Rasch	dels						1PL	del	

- Independent Bernoulli responses in a subject-item arrangement:
$Y_{i s}$ is the outcome of the s th subject on the i th item.
- $\pi_{i s}=P\left(Y_{i s}=1\right)$: the probability that s th subject succeeds on the i th item, $(i=1, \ldots, I ; s=1, \ldots, S)$.
- The 1PL Rasch model: (a special logistic regression model)

$$
\log \frac{\pi_{i s}}{1-\pi_{i s}}=\eta_{i s}=\alpha_{i}+\gamma_{s} \quad(i=1, \ldots, I ; s=1, \ldots, S),
$$

where α_{i}, γ_{s} are uknown model parameters, and $\eta_{i s}$ the predictor for the 1 PL model.

- Parameter vector: $\theta=\left(\alpha_{1}, \ldots, \alpha_{I}, \gamma_{1}, \ldots, \gamma_{S}\right)^{T}$,
- Parameter interpretation:
- α_{i} (or $-\alpha_{i}$): measure of the "ease" (or "difficulty") of the i th item,
- γ_{s} : the "ability" of the s th subject.
- The 2PL Rasch model:

$$
\log \frac{\pi_{i s}}{1-\pi_{i s}}=\tilde{\eta}_{i s}=\alpha_{i}+\beta_{i} \gamma_{s} \quad(i=1, \ldots, I ; s=1, \ldots, S)
$$

where β_{i} is a "discrimination" parameter for the i th item, and $\tilde{\eta}_{i s}$ the predictor for the 2 PL model.

- Parameter vector: $\tilde{\theta}=\left(\alpha_{1}, \ldots, \alpha_{I}, \beta_{1}, \ldots, \beta_{I}, \gamma_{1}, \ldots, \gamma_{S}\right)^{T}$.
- The larger $\left|\beta_{i}\right|$ is the steeper is the Item-Response Function (IRF) (the map from γ_{s} to $\pi_{i s}$).

1PL model: 5 subjects - 3 items

Item 2: $\quad \alpha_{2}=0$

Item 3: $\quad \alpha_{3}=-2$

2PL model: 5 subjects - 3 items

0000 Advantages

Maximum likelihood estimation
$\rightarrow \quad \mathrm{ML}$ estimation is straighforward using generic tools (e.g. gnm uses a quasi Newton-Raphon iteration).
\rightarrow Generic inferential procedures (LR tests, likelihood-based confidence intervals).

Useful asymptotic frameworks (e.g. information grows with the number of subjects or number of items):
\rightarrow Full maximum likelihood generally delivers inconsistent estimates. (Andersen, 1980, Chapter 6)
\rightarrow Loss of performance (e.g. coverage) of tests, confidence intervals.
\rightarrow (Partial) Solutions: Conditional likelihoods, integrated likelihoods, modified profile likelihoods
\rightarrow can be hard to apply for 2 PL due to nonlinearity.

- As with many models for binomial responses, there is positive probability of boundary ML estimates.
\rightarrow Numerical issues in estimation.
\rightarrow Problems with asymptotic inference (e.g. Wald-based inferences).
$\rightarrow \quad$ Add small constants to the responses in the spirit of Haldane (1955) (?)

Rasch Models 0000	Maximum likelihood estimation 000	Bias reduction -000000000	Parameterization	Application	Discussion	References	Rasch Models 0000	Maximum likelihood estimation 000	Bias reduction 000000000	Parameterization
Adjusted score functions							Adjusted score functions			
Bias-reducing adjusted score functions							Bias-reducing adjusted score functions			

- Firth (1993): appropriate adjustment $A(\theta)$ to the score vector for getting estimators with smaller asymptotic bias than ML:

$$
\nabla_{\theta} l(\theta)+A(\theta)=0 .
$$

- Applicable to models where the infromation on the parameters increases with the number of observations $(\operatorname{dim} \theta$ is independent of the number of observations).
\rightarrow Not the case for Rasch models under useful asymptotic frameworks.
\rightarrow But expect less-biased estimators than ML.
$\rightarrow \quad$ In binomial/multinomial response GLMs, the reduced-bias estimates have been found to be always finite (Heinze and Schemper 2002; Bull et al. 2002; Zorn 2005; Kosmidis 2009)
\rightarrow Easy implementation:
- Iterative bias correction (Kosmidis and Firth 2010)
- Iterated ML fits on pseudo-data (Kosmidis and Firth 2011)

Adjusted score equations for 1PL (Firth 1993, logistic regressions)

$$
0=\sum_{i=1}^{I} \sum_{s=1}^{S}\left(y_{i s}+\frac{1}{2} h_{i s}+\left(1+h_{i s}\right) \pi_{i s}\right) z_{i s t} \quad(t=1, \ldots, I+S),
$$

where

- $z_{i s t}=\partial \eta_{i s} / \partial \theta_{t}$ is the (s, t) th element of the $S \times(I+S)$ matrix Z_{i},
- $h_{i s}$ is the s th diagonal element of $H_{i}=Z_{i} F^{-1} Z_{i}^{T} \Sigma_{r}$ ("hat value" for the (i, s) th observation),
- $F=\sum_{i=1}^{T} Z_{i}^{T} \Sigma_{i} Z_{i}$ (the Fisher information),
- $\Sigma_{i}=\operatorname{diag}\left\{v_{i 1}, \ldots, v_{i S}\right\}, v_{i s}=\operatorname{var}\left(Y_{i s}\right)$

Adjusted score equations for 1PL (Firth 1993, logistic regressions)

$$
0=\sum_{i=1}^{I} \sum_{s=1}^{S}\left(y_{i s}+\frac{1}{2} h_{i s}+\left(1+h_{i s}\right) \pi_{i s}\right) z_{i s t} \quad(t=1, \ldots, I+S)
$$

where

- $z_{i s t}=\partial \eta_{i s} / \partial \theta_{t}$ is the (s, t) th element of the $S \times(I+S)$ matrix Z_{i},
- $h_{i s}$ is the s th diagonal element of $H_{i}=Z_{i} F^{-1} Z_{i}^{T} \Sigma_{r}$ ("hat value" for the (i, s) th observation),
- $F=\sum_{i=1}^{T} Z_{i}^{T} \Sigma_{i} Z_{i}$ (the Fisher information),
- $\Sigma_{i}=\operatorname{diag}\left\{v_{i 1}, \ldots, v_{i S}\right\}, v_{i s}=\operatorname{var}\left(Y_{i s}\right)$

Rasch Models	Maximum likelihood estimation	Bias reduction
OOOO	$0000 \bullet 0000$	
Adjusted score functions		

Adjusted score equations for 2PL

Adjusted score equations for 2PL (Kosmidis and Firth 2009, GNMs)

$0=\sum_{i=1}^{I} \sum_{s=1}^{S}\left(y_{i s}+\frac{1}{2} \tilde{h}_{i s}+\left(1+\tilde{h}_{i s}\right) \pi_{i s}+c_{i s} v_{i s}\right) \tilde{z}_{i s t} \quad(t=1, \ldots, 2 I+S)$
where

- $\tilde{z}_{i s t}=\partial \tilde{\eta}_{i s} / \partial \tilde{\theta}_{t}$ is the (s, t) th element of the $S \times(2 I+S)$ matrix \tilde{Z}_{i},
- $\tilde{h}_{i s}$ is the "hat value" for the (i, s) th observation,
- $\tilde{F}=\sum_{i=1}^{T} \tilde{Z}_{i}^{T} \Sigma_{i} \tilde{Z}_{i}$,
- $\Sigma_{i}=\operatorname{diag}\left\{v_{i 1}, \ldots, v_{i S}\right\}, v_{i s}=\operatorname{var}\left(Y_{i s}\right)=\pi_{i s}\left(1-\pi_{i s}\right)$,
- $c_{i s}$ is the asymptotic covariance of the ML estimators of β_{i} and γ_{s} (from the components of \tilde{F}^{-1}).

Masch Models Maximum likelihood estimation Bias reduction

Adjusted score equations for 2PL

$$
\begin{aligned}
& \text { Adjusted score equations for } 2 \text { PL (Kosmidis and Firth 2009, GNMs) } \\
& 0=\sum_{i=1}^{I} \sum_{s=1}^{S}\left(y_{i s}+\frac{1}{2} \tilde{h}_{i s}+\left(1+\tilde{h}_{i s}\right) \pi_{i s}+c_{i s} v_{i s}\right) \tilde{z}_{i s t} \quad(t=1, \ldots, 2 I+S) \\
& \text { where } \\
& \text { - } \tilde{z}_{i s t}=\partial \tilde{\eta}_{i s} / \partial \tilde{\theta}_{t} \text { is the }(s, t) \text { th element of the } S \times(2 I+S) \text { matrix } \tilde{Z}_{i} \text {, } \\
& \text { - } \tilde{h}_{i s} \text { is the "hat value" for the }(i, s) \text { th observation, } \\
& \text { - } \tilde{F}=\sum_{i=1}^{T} \tilde{Z}_{i}^{T} \Sigma_{i} \tilde{Z}_{i} \text {, } \\
& \text { - } \Sigma_{i}=\operatorname{diag}\left\{v_{i 1}, \ldots, v_{i S}\right\}, v_{i s}=\operatorname{var}\left(Y_{i s}\right)=\pi_{i s}\left(1-\pi_{i s}\right) \text {, } \\
& \text { - } c_{i s} \text { is the asymptotic covariance of the ML estimators of } \beta_{i} \text { and } \gamma_{s} \\
& \text { (from the components of } \left.\tilde{F}^{-1}\right) \text {. }
\end{aligned}
$$

$\rightarrow \quad$ If h and \tilde{h} did not depend on the parameters then the reduced-bias estimator would be formally the ML estimator on Binomial pseudo-data.
\(\left.$$
\begin{array}{lll}\text { Model } & \text { Pseudo-data } \\
\hline 1 \mathrm{PL} & \begin{array}{l}\text { Responses: } \\
\\
\\
\text { Totals: }\end{array}
$$ \& y^{*}=y+h / 2

m^{*}=1+h\end{array}\right]\)\begin{tabular}{lll}

2PL \& \begin{tabular}{ll}
Responses:

\& Totals:

 \&

$\tilde{m}^{*}=y+\tilde{h} / 2+c \pi(1-\pi)$

$\tilde{m}^{*}=1+\tilde{h}$
\end{tabular}

\hline
\end{tabular}

$\rightarrow \quad$ If h and \tilde{h} did not depend on the parameters then the reduced-bias estimator would be formally the ML estimator on Binomial pseudo-data.

Model	Pseudo-data	
1 PL	Responses:	$y^{*}=y+h / 2$
	Totals:	$m^{*}=1+h$

2 PL	Responses:	$\tilde{y}^{*}=y+\tilde{h} / 2+c \pi 1_{(c>0)}$
	Totals:	$\tilde{m}^{*}=1+\tilde{h}+c\left(\pi-1_{(c<0)}\right)$

* via algebraic manipulation of the adjusted scores to ensure
$0 \leq y^{*} \leq m^{*}$. Here, $1_{E}=1$ if E holds.

Iterated ML fits on pseudo data

- The adjusted score equations can be solved as follows.

Iterated ML fits on pseudo data

At each iteration
(1) Update the values of the pseudo data.
(2) Use ML to fit the Rasch model on the current value of the pseudo data.

Repeat until the changes to the estimates are small.

- Ingredients: standard ML software, routines for extracting the hat values and Fisher information.
$\rightarrow \quad$ gnm and the methods hatvalues, vcov for gnm objects can do this
- tempFit: a gnm object in identifiable parameterization, pseudoData: function that evaluates the pseudo data at the supplied fit - y^{*} and m^{*} depend on the parameters only through the "working weights" $\pi_{i s}\left(1-\pi_{i s}\right)$.
\#\# Rescale working weights:
tempFit\$weights <- with(tempFit, weights/prior.weights) \#\# Evaluate pseudo data
currentData <- pseudoData(tempFit)
\#\# Fit model at the current pseudo data
tempFit <- update(tempFit, ys/ms ~ ., weights = ms,
data $=$ currentData)
- 1PL model:

$$
\log \frac{\pi_{i s}}{1-\pi_{i s}}=\eta_{i s}=\alpha_{i}+\gamma_{s} \quad(i=1, \ldots, I ; s=1, \ldots, S),
$$

- Fix location of α 's or location of γ 's (only $I+S-1$ parameters can be estimated).
- Reduced-bias estimator is equivariant to ordinary constrasts (bias is equivariant in the group of affine transformations).
- 2PL model:

$$
\log \frac{\pi_{i s}}{1-\pi_{i s}}=\eta_{i s}=\alpha_{i}+\beta_{i} \gamma_{s} \quad(i=1, \ldots, I ; s=1, \ldots, S)
$$

- Fix location of α 's and scale of β 's or location and scale of γ 's (only $2 I+S-2$ parameters can be estimated)

Rasch Mpplication

Example: Scaling of legislators

Data:

- US House of Representatives, 20 roll calls selected by Americans for Democratic Action
- About 300 of 439 members voted on 10 or more of the 20 issues
- In gnm as dataset House2001; data kindly supplied by Jan deLeeuw, used in deLeeuw (2006, CSDA)
- Aim here is to place the members on a 'liberality' scale
?House2001 in the gnm package uses an ad hoc (constant) data adjustment to achieve finite estimates for all 300 members. The method proposed in this talk is rather more principled!

This is very much work in progress!
The method described here yields more sensible results than either MLE or constant data-adjustment.

Computationally convenient.

But still it is inconsistent (e.g., as the number of items increases).
Aim of current work is to generalize fully the penalization approach of Firth (1993) to situations like this, where the number of 'nuisance' parameters increases with n.

Bull, S. B., C. Mak, and C. Greenwood (2002). A modified score function estimator for multinomial logistic regression in small samples. Computational Statistics and Data Analysis 39, 57-74. Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80(1), 27-38. Firth, D. and R. X. de Menezes (2004). Quasi-variances. Biometrika 91(1), 65-80.
Haldane, J. (1955). The estimation of the logarithm of a ratio of frequencies. Annals of Human Genetics 20, 309-311.
Heinze, G. and M. Schemper (2002). A solution to the problem of separation in logistic regression. Statistics in Medicine 21, 2409-2419.
Kosmidis, I. (2009). On iterative adjustment of responses for the reduction of bias in binary osmidis, . (2009). On iterative adjustment of responses for the reduction
regression models. Technical Report 09-36, CRiSM working paper series.
Kosmidis, I. and D. Firth (2009). Bias reduction in exponential family nonlinear models. Biometrika 96(4), 793-804.
Kosmidis, I. and D. Firth (2010). A generic algorithm for reducing bias in parametric estimation. Electronic Journal of Statistics 4, 1097-1112.
Kosmidis, I. and D. Firth (2011). Multinomial logit bias reduction via the poisson log-linear model. Biometrika 98(3), 755-759.
Zorn, C. (2005). A solution to separation in binary response models. Political Analysis 13, 157-170.

