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Introduction

Latent traits measured through probabilistic models for item
response data.

Here, Rasch model for binary items.

Crucial assumption of measurement invariance: All items measure
the latent trait in the same way for all subjects.

Check for heterogeneity in (groups of) subjects, either based on
observed covariates or unobserved latent classes.

Mixtures of Rasch models to address heterogeneity in latent
classes.

Rasch Model

Probability for person i to solve item j :

P(Yij = yij |θi , βj) =
exp{yij(θi − βj)}
1 + exp{θi − βj}

.

yij : Response by person i to item j .

θi : Ability of person i .

βj : Difficulty of item j .

By construction:

No covariates, all information is captured by ability and difficulty.

Both parameters θ and β are on the same scale: If β1 > β2, then
item 1 is more difficult than item 2 for all subjects.

Central assumption of measurement invariance needs to be checked
for both manifest and latent subject groups.



Rasch Model: Estimation

Joint estimation of θ and β is inconsistent.

Conditional ML estimation: Use factorization of the full likelihood
on basis of the scores ri =

∑m
j=1 yij :

L(θ, β) = f (y |θ, β)

= h(y |r , θ, β)g(r |θ, β)

= h(y |r , β)g(r |θ, β).

Estimate β from maximization of h(y |r , β).

Also maximizes L(θ, β) if g(r |·) is assumed to be independent of θ
and β; but potentially depending on auxiliary parameters δ: g(r |δ).

Mixture Models

Assumption: Data stems from different classes but class
membership is unknown.

Modeling tool: Mixture models.

Mixture model =
∑

weight × component.

Components represent the latent classes. They are densities or
(regression) models.

Weights are a priori probabilities for the components/classes,
treated either as parameters or modeled through concomitant
variables.

Rasch Mixture Models: Framework

Full mixture:

Weights: Either (non-parametric) prior probabilities πk or
weights π(k |x , α) based on concomitant variables x , e.g., a
multinomial logit model.

Components: Conditional likelihood for item parameters and
specification of score probabilities

f (y |π, α, β, δ) =
n∏

i=1

K∑

k=1

π(k |xi , α) h(yi |ri , βk ) g(ri |δk ).

Estimation of all parameters via ML through the EM algorithm.

Rasch Mixture Models: Score Probabilities

Original proposition by Rost (1990): Discrete distribution with
parameters (probabilities) g(r) = Ψr .

Number of parameters necessary is potentially very high:
(number of items - 1) × (number of components).

More parsimonious: Assume parametric model on score
probabilities, e.g., using mean and variance parameters.

General approach: Conditional logit model encompassing the
original saturated parameterization and a mean/variance
parameterization (with only two parameters per component) as
special cases

g(r |δ) =
exp{z>r δ}∑m−1

j=1 exp{z>j δ}
.



Rasch Mixture Models: Score Probabilities

Motivation: When checking for measurement invariance, items are of
interest, not the scores.

Idea: Use
g(r) = constant

Equivalent to: Score distribution is the same over all components.

Interpretation:

Score distribution is irrelevant to the mixture.

Consequently, the mixture is only influenced by latent classes
regarding the item parameters.

Differences in the score distribution (if any) do not influence the
mixture, neither if coincident with differences in the item
parameters nor if w.r.t. other classes.

Rasch Mixture Models: Score Models

Mean/variance:

Parsimonious: 2 parameters per class.

Mixture might catch on to latent score groups, even when no
differential item functioning (DIF) is present.

Saturated:

Non-identified if no DIF present, as a mixture of multinomial
models is itself a multinomial model.

Possibly too many parameters to detect moderate DIF.

Constant:

Mixture only influenced by latent groups in items (i.e., DIF), yet
parsimonious.

Potentially less accurate if latent groups are present in both scores
and items – and the groups coincide.

Trade accuracy for robustness.

Software

Available in R in package psychomix at
http://CRAN.R-project.org/package=psychomix

Based on package flexmix (Grün and Leisch, 2008) for flexible
estimation of mixture models.

Based on package psychotools for estimation of Rasch models.

Frick et al. (2011), provides implementation details and hands-on
practical guidance. See also vignette("raschmix", package

= "psychomix").

Illustration: No DIF

Data generating process:

m = 20 items, n = 100 subjects.

No DIF: all item difficulties β = 0.

Differences in scores through 2 different abilities: {−1.8, 1.8}.
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Illustration: No DIF
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Figure: Mixture Rasch model with 1 to 2 classes and a meanvar (left) and a
constant (right) specification of the score model.

Illustration: No DIF
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Figure: Estimated item parameters (left) and score probabilities with empirical
score distribution (right) of the 2-class Rasch mixture model with a meanvar
score specification.

Illustration: Moderate DIF

Data generating process:
m = 20 items, n = 1000 subjects.
2 items with DIF: β = (−1.2, 1.2) and β = (1.2,−1.2),
all other items with β = 0.
All abilities θ = 0.
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Figure: Estimated item difficulties for whole sample and in both subsamples.

Illustration: Moderate DIF
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Figure: Mixture Rasch model with 1 to 2 classes and a saturated (left) and a
constant (right) specification of the score model.



Illustration: Moderate DIF
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Figure: Estimated item difficulties in a 2-class Rasch mixture model with a
constant score model.

Application: Verbal Aggression Data

Behavioral study of psychology students: 243 women and 73 men.
Description of frustrating situations:

S1: A bus fails to stop for me.
S2: I miss a train because a clerk gave me faulty information.

Behavioral mode: Want or do.

Verbally aggressive response: Curse, scold, or shout.

12 resulting items: S1WantCurse, S1DoCurse, S1WantScold, . . . ,
S2WantShout, S2DoShout

Covariates: Gender and an anger score.

Verbal Aggression: Analysis

Fit model:

R> set.seed(1)
R> mix <- raschmix(resp2 ~ 1, data = va12, k = 1:4,
+ scores = "constant", nrep = 5)
R> mixC <- raschmix(resp2 ~ gender + anger, data = va12,
+ k = 2:4, scores = "constant", nrep = 5)

Select model:

R> rbind(mix = BIC(mix), mixC = c(NA, BIC(mixC)))

1 2 3 4
mix 3881.065 3854.193 3847.796 3865.268
mixC NA 3861.127 3850.129 3867.554

R> va12_mix <- getModel(mixC, which = "3")

Plot item profiles and effects of concomitant variables:

R> xyplot(va12_mix)
R> effectsplot(va12_mix)

Verbal aggression: Item profiles
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Figure: Item difficulty profiles for the 3-component Rasch mixture model.
Items 1–6: Situation S1 (bus). Items 7–12: Situation S2 (train).
Order: want/do curse, want/do scold, want/do shout.



Verbal aggression: Effects displays

gender effect plot
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Figure: Effect plots for the concomitant variables gender and age in a
3-component Rasch mixture model.

Verbal Aggression: Summary

Number of components: 3 different sets of item parameters
necessary.

Relationship between items differs between the latent classes.

For shouting: Want is less extreme than do. For cursing and
scolding, this depends on the latent class.

One class does not differentiate much between the items, for the
two other classes, cursing/scolding/shouting is increasingly
extreme.

Some dependence on covariates gender and anger score (albeit
slightly poorer BIC).

Summary

Mixture Rasch models are a flexible means to check for
measurement invariance.

General framework incorporates concomitant variable models for
mixture weights along with various score models.

Newly introduced constant score model: robust and parsimonious.

Implementation in R package psychomix.
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