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Exact tests

The Rasch Model (Rasch, 1960)

P (Xvi = 1∣θv, βi) = exp(θv − βi)
1 + exp(θv − βi)

0 0 1 0 2
1 0 0 1 2
1 0 0 0 1
1 0 1 1 3
0 0 1 0 1
1 1 1 0 3
0 1 0 0 1
1 0 0 0 1
1 1 0 0 2
0 0 0 1 1
6 3 4 3

● completely determined by the margins● model �t can be evaluated by parametric and quasi-exact tests
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Exact tests

Motivation for exact tests

Statistical tests and con�dence intervals are based on exact probability
statements that are valid for any sample size.

Construction principle:

● Rearrange the labels of the observed data points.● Calculate all possible values of the test statistic.● Yields the distribution of the test statistic under the null hypothesis.
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Exact tests
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Exact tests

Motivation for exact tests (cont.)

Advantages:

● No parameter estimation necessary.

● Are not based on asymptotic and approximate statistical methods.

● Valid for small sample sizes.
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Exact tests

Background

Various algorithms for sampling 0−1 matrices with given marginals in a nonuni-
form way have already been proposed and can generally be divided into two
classes:

● Nonuniform sampling schemes:

� Recursive solving of a linear program with restrictions to the row
sums.

� Based on the sequential importance sampling (SIS) algorithm (e.g.
Snijders, 1991, Chen and Small, 2005, Chen, Dinwood and Sullivant,
2006).

1 . . 2
0 . . 1
1 . . 1
2 1 1

→ 1 0 1 2
0 1 0 1
1 0 0 1
2 1 1
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Exact tests

Background (cont.)

● Applications of the Markov-Chain Monte Carlo method:

� All matrices in the sample space are considered as states.

� The sampling scheme and a special permutation rule is de�ning their
transition probability (Ponocny, 2001, Verhelst, 2008).

0 1
1 0
1 0
1 1
0 0

→ 1 0
0 1
1 0
1 1
0 0
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Exact tests

Requirements

● Coverage of the whole sample space

● Independence

● Uniform sampling
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(1) Coverage of the whole sample space

The MCMC approach of Verhelst in general

● All binary matrices with �xed row (r) and column (c) sums, A ∈ Σrc

(whereas Σrc denotes the sample space of possible matrices) are
considered as states.

● The observed data matrix is considered as the starting state, A0.

● A0 can be transformed in one step into other matrices At ∈ Σrc using a
well de�ned rule R.

● The R-neighborhood is the set of all reachable matrices using such a
transformation of A0, AR(A0).

● Sampling algorithm:

A0 A1 A2 As+1AR(A0) AR(A1) AR(As)
As

● Sampling scheme de�nes the transition matrix P = (pst) ( with lim
n→∞P net = π)

of the Markov Chain
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(1) Coverage of the whole sample space

The binomial rule and binomial neighborhoods

Binomial rule:

→ Assign a ones to m rows to the �rst column with row totals equal to one,
and zero to the m − a rows.

→ Yields �rst column of the transformed matrix, the second one is just the
compliment of it.

1 2 3 4
0 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1
0 0 1 0
1 1 1 0
0 1 0 0
1 0 0 0
1 1 0 0
0 0 0 1

→
1 2
0 0
1 0
1 0
0 1
0 0
1 1
0 1
1 0
1 1
0 0

→
1 2
0 0
0 1
1 0
1 0
0 0
1 1
1 0
0 1
1 1
0 0

→
1 2 3 4
0 0 1 0
0 1 0 1
1 0 0 0
1 0 1 1
0 0 1 0
1 1 1 0
1 0 0 0
0 1 0 0
1 1 0 0
0 0 0 1
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(1) Coverage of the whole sample space

The binomial rule and binomial neighborhoods (cont.)

The Bij-neighborhood of A ∈ Σrc is de�ned by

A(i,j)B (A) = {As ∶ As is a Bij transform of A and As ≠ A}
The set of all matrices that can be formed by a single binomial transformation
of a single column pair of A is

AB(A) = ⋃(i,j)A(i,j)B (A)
1 2 3 4
1 1 1 0
1 1 0 1
1 0 1 0
0 1 0 0
0 1 0 1
0 0 0 1
1 1 1 0

1 2
1 1
1 1
1 0
0 1
0 1
0 0
1 1

(3
1
)

1 × 2

1 3
1 1
1 0
1 1
0 0
0 0
0 0
1 1

−
1 × 0

. . .

1 4
1 0
1 1
1 0
0 0
0 1
0 1
1 0

(3
2
)

1 × 2

Psychoco 2012 11

(1) Coverage of the whole sample space

The binomial rule and binomial neighborhoods (cont.)

1 2 3 4
1 1 1 0
1 1 0 1
1 0 1 0
0 1 0 0
0 1 0 1
0 0 0 1
1 1 1 0

1 2
1 1
1 1
1 0
0 1
0 1
0 0
1 1

1 3
1 1
1 0
1 1
0 0
0 0
0 0
1 1

. . .

1 4
1 0
1 1
1 0
0 0
0 1
0 1
1 0

The column pair (i, j) is a Guttman pair if aij × bij = 0, if aij × bij > 0 the pair is
called regular.

The k2-measure of A ∈ Σrc is de�ned as

k2(A) = {♯(i, j) ∶ i < j ≤ k, (i, j) is a regular pair}
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(2) Independence

The MCMC-method in general

A0 As As+1 AS

Stationary distribution

Burn-in Step size

Psychoco 2012 13

(3) Uniform sampling

The Metropolis-Hastings algorithm

● Start the chain in the observed data matrix, A0.

● Select randomly a pair of columns (i, j) from the k2(As) regular column
pairs of As.

● Apply a random binomial operation to the selected pair, yielding As+1.

� If As+1 = As repeat step 2.

� Otherwise:

As

As+1k2(As+1) ≤ k2(As)

k2(As+1) > k2(As) As
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Polytomous data

The Partial Credit Model (Masters, 1982)

A generalization of the probability for a response of person v on category h
(h = 0, . . . ,mi) of item i, whereas mi is the number of response categories.

P (Xvih = 1) = exp(hθv + βih)∑mi

l=0 exp(lθv + βil)
Xvih . . . person v scores in category h of item i
θv . . . location of person v on latent trait h
βih . . . item category combination (allows di�erent numbers of response cat-

egories)
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Generalization of the MCMC approach

Requirements

1. Coverage of the whole sample space

2. Independence

3. Uniform sampling

4. Frequency distribution for categories must be maintained for each item.
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Generalization of the MCMC approach

Binomial neighborhoods in ordinal data

Apply a binomial transformation on a single category tupel (g,h) of a de�ned
set of integer tupels C(i,j) (= all possible category combinations).

1 2 3 4
0 2 1 0
1 2 0 1
1 0 2 0
2 0 1 1
0 2 1 0
2 0 0 2
2 2 0 0
0 0 1 0
1 0 0 2
0 0 0 1

→
1 2
0 2
1 2
1 0
2 0
0 2
2 0
2 2
0 0
1 0
0 0

→
1 2
2 0
1 2
1 0
0 2
2 0
0 2
2 2
0 0
1 0
0 0

→
1 2 3 4
2 0 1 0
1 2 0 1
1 0 2 0
0 2 1 1
2 0 1 0
0 2 0 2
2 2 0 0
0 0 1 0
1 0 0 2
0 0 0 1
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Generalization of the MCMC approach

Binomial neighborhoods in ordinal data (cont.)

The generalized Bij-neighborhood of a matrix B ∈ Σrc is de�ned as

AB(B) = ⋃(i,j) (AB(i,j)(B) ×C(i,j))
B is a matrix with maximum x categories of integers in increasing order.
C(i,j) is the set of all category tupels (g,h), g < h of a column pair (i, j) ∈ B.

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) (i,j)
(0,1) x x
(0,2) x x
(1,2) x x
(g,h)

Psychoco 2012 18

Generalization of the MCMC approach

Extension to multinomial neighborhoods

Apply the transformation for each category tupel (g,h), g < h, simultaneously.
1 2 3 4
0 2 1 0
1 2 0 1
1 0 2 0
2 0 1 1
0 2 1 0
2 0 0 2
2 2 0 0
0 0 1 0
1 0 0 2
0 0 0 1

→
1 2
0 2
1 2
1 0
2 0
0 2
2 0
2 2
0 0
1 0
0 0

→
1 2
2 0
2 1
1 0
0 2
2 0
0 2
2 2
0 0
0 1
0 0

→
1 2 3 4
2 0 1 0
2 1 0 1
1 0 2 0
0 2 1 1
2 0 1 0
0 2 0 2
2 2 0 0
0 0 1 0
0 1 0 2
0 0 0 1
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Generalization of the MCMC approach

Extension to multinomial neighborhoods (cont.)

The Mij-neighborhood of matrix B ∈ Σrc is de�ned as

BM(B) = P (AB(i,j)(g,h)(B))
Set of simultaneous binomial transforms on a single column pair (i, j) applied
to each of its category tupels (g,h).
The multinomial neighborhood is the power set of the column pair subset D
and the category tupel subset C(i,j).

AB(i,j)(g,h)(B) =D ×C(i,j)

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) (i,j)
(0,1) x x
(0,2) x x
(1,2) x x
(g,h)
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Generalization of the MCMC approach

Outlook

● Investigate the behavior of the algorithm.
� First rule for small data sizes.
� Second rule for big data sizes.● Check required...
� Burn-in period (stationarity)
� Rejection rates of the MH
� Step size● Develop quasi-exact tests for the family of partial credit models.
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