1

3 4 3

6

The Rasch Model (Rasch, 1960)

Generating matrices

with ordinal responses and fixed margins

Kathrin Gruber & Reinhold Hatzinger Department of Statistics and Mathematics, WU Wien

	0	0	1	0	2
	1	0	0	1	2
$ern(\theta_{i} - \beta_{i})$	1	0	0	0	1
$P(X_{vi} = 1 \theta_v, \beta_i) = \frac{exp(\theta_v, \beta_i)}{1 + exp(\theta_v, \beta_i)}$	1	0	1	1	3
$1 + exp(\theta_v - p_i)$	0	0	1	0	1
	1	1	1	0	3
	0	1	0	0	1
	1	0	0	0	1
	1	1	0	0	2
	0	0	0	1	1

• completely determined by the margins

• model fit can be evaluated by parametric and quasi-exact tests

Psychoco 2012	1
Exact tests	<u>()</u>

Motivation for exact tests

Statistical tests and confidence intervals are based on exact probability statements that are valid for any sample size.

Construction principle:

- Rearrange the labels of the observed data points.
- Calculate all possible values of the test statistic.
- Yields the distribution of the test statistic under the null hypothesis.

Motivation for exact tests (cont.)

Advantages:

- No parameter estimation necessary.
- Are not based on asymptotic and approximate statistical methods.
- Valid for small sample sizes.

Background

Various algorithms for sampling 0–1 matrices with given marginals in a nonuniform way have already been proposed and can generally be divided into two classes:

- Nonuniform sampling schemes:
 - Recursive solving of a linear program with restrictions to the row sums.
 - Based on the sequential importance sampling (SIS) algorithm (e.g. Snijders, 1991, Chen and Small, 2005, Chen, Dinwood and Sullivant, 2006).

1		•	2		1	0	1	2
0			1		0	1	0	1
1			1	~	1	0	0	1
2	1	1	1		2	1	1	

Psychoco 2012	5
Exact tests	Ŵ

Background (cont.)

- Applications of the Markov-Chain Monte Carlo method:
 - All matrices in the sample space are considered as states.
 - The sampling scheme and a special permutation rule is defining their transition probability (Ponocny, 2001, Verhelst, 2008).

Psychoco 2012	6
Exact tests	

Requirements

- Coverage of the whole sample space
- Independence

• Uniform sampling

The MCMC approach of Verhelst in general

- All binary matrices with fixed row (r) and column (c) sums, $A \in \sum_{rc}$ (whereas \sum_{rc} denotes the sample space of possible matrices) are considered as states.
- The observed data matrix is considered as the starting state, A_0 .
- A_0 can be transformed in one step into other matrices $A_t \in \Sigma_{rc}$ using a well defined rule R.
- The R-neighborhood is the set of all reachable matrices using such a transformation of A_0 , $\mathcal{A}_R(A_0)$.
- Sampling algorithm:

$$A_{0} \xrightarrow{A_{1}} A_{R}(A_{0}) \xrightarrow{A_{1}} A_{R}(A_{1}) \xrightarrow{A_{2}} \cdots \xrightarrow{A_{s}} A_{R}(A_{s}) \xrightarrow{A_{s+1}} A_{R}($$

• Sampling scheme defines the transition matrix $P = (p_{st})$ (with $\lim_{n \to \infty} P^n e_t = \pi$) of the Markov Chain

The binomial rule and binomial neighborhoods (cont.)

The B_{ij} -neighborhood of $A \in \Sigma_{rc}$ is defined by

 $\mathcal{A}_{B}^{(i,j)}(A) = \{A_{s} : A_{s} \text{ is a } B_{ij} \text{ transform of } A \text{ and } A_{s} \neq A\}$

The set of all matrices that can be formed by a single binomial transformation of a single column pair of ${\cal A}$ is

$\mathcal{A}_B(A) = \bigcup_{(i,j)} \mathcal{A}_B^{(i,j)}(A)$

(1) Coverage of the whole sample space

The binomial rule and binomial neighborhoods

Binomial rule:

- → Assign a ones to m rows to the first column with row totals equal to one, and zero to the m a rows.
- \rightarrow Yields first column of the transformed matrix, the second one is just the compliment of it.

Psychoco 2012	10
(1) Coverage of the whole sample space	Ŵ

(1) Coverage of the whole sample space

The binomial rule and binomial neighborhoods (cont.)

1	2	3	4	1	2	1	3	1	4
1	1	1	0	1	1	1	1	1	0
1	1	0	1	1	1	1	0	1	1
1	0	1	0	1	0	1	1	1	0
0	1	0	0	0	1	0	0	0	0
0	1	0	1	0	1	0	0	 0	1
0	0	0	1	0	0	0	0	0	1
1	1	1	0	1	1	1	1	1	0

The column pair (i, j) is a Guttman pair if $a_{ij} \times b_{ij} = 0$, if $a_{ij} \times b_{ij} > 0$ the pair is called regular.

The k_2 -measure of $A \in \Sigma_{rc}$ is defined as

 $k_2(A) = \{ \sharp(i,j) : i < j \le k, (i,j) \text{ is a regular pair} \}$

The MCMC-method in general

The Metropolis-Hastings algorithm

- Start the chain in the observed data matrix, A_0 .
- Select randomly a pair of columns (i,j) from the $k_2({\cal A}_s)$ regular column pairs of ${\cal A}_s.$
- Apply a random binomial operation to the selected pair, yielding A_{s+1} .
 - If $A_{s+1} = A_s$ repeat step 2.
 - Otherwise:

Psychoco 2012	13
Polytomous data	@

The Partial Credit Model (Masters, 1982)

A generalization of the probability for a response of person v on category h $(h = 0, ..., m_i)$ of item i, whereas m_i is the number of response categories.

$$P(X_{vih} = 1) = \frac{exp(h\theta_v + \beta_{ih})}{\sum_{l=0}^{m_i} exp(l\theta_v + \beta_{il})}$$

 X_{vih} ... person v scores in category h of item i

- θ_v ... location of person v on latent trait h
- $\beta_{ih} \ \ldots$ item category combination (allows different numbers of response categories)

Psychoco 2012	14
Generalization of the MCMC approach	

Requirements

- 1. Coverage of the whole sample space
- 2. Independence
- 3. Uniform sampling
- 4. Frequency distribution for categories must be maintained for each item.

Binomial neighborhoods in ordinal data

Apply a binomial transformation on a single category tupel (g,h) of a defined set of integer tupels $C^{(i,j)}$ (= all possible category combinations).

1	2	3	4		1	2		1	2		1	2	3	4
0	2	1	0		0	2		2	0		2	0	1	0
1	2	0	1		1	2		1	2		1	2	0	1
1	0	2	0		1	0		1	0		1	0	2	0
2	0	1	1		2	0		0	2		0	2	1	1
0	2	1	0	\rightarrow	0	2	\rightarrow	2	0	\rightarrow	2	0	1	0
2	0	0	2		2	0		0	2		0	2	0	2
2	2	0	0		2	2		2	2		2	2	0	0
0	0	1	0		0	0		0	0		0	0	1	0
1	0	0	2		1	0		1	0		1	0	0	2
0	0	0	1		0	0		0	0		0	0	0	1

Binomial neighborhoods in ordinal data (cont.)

The generalized B_{ij} -neighborhood of a matrix $B \in \Sigma_{rc}$ is defined as

$$\mathcal{A}_B(B) = \bigcup_{(i,j)} \left(\mathcal{A}_B^{(i,j)}(B) \times C^{(i,j)} \right)$$

B is a matrix with maximum *x* categories of integers in increasing order. $C^{(i,j)}$ is the set of all category tupels (g,h), g < h of a column pair $(i,j) \in B$.

	(1,2)	(1,3)	(1,4)	(2,3)	(2,4)	(3,4)	(i,j)
(0,1)	X		Х				
(0,2)	X				Х		
(1,2)	X	Х					
(g,h)							

Psychoco 2012	1
Generalization of the MCMC approach	

Extension to multinomial neighborhoods

Apply the transformation for each category tupel (g,h), g < h, simultaneously.

Psychoco 2012	18
Generalization of the MCMC approach	Ŵ

Extension to multinomial neighborhoods (cont.)

The M_{ij} -neighborhood of matrix $B \in \Sigma_{rc}$ is defined as

 $\mathcal{B}_M(B) = \mathcal{P}\left(\mathcal{A}_{B_{(q,h)}}^{(i,j)}(B)\right)$

Set of simultaneous binomial transforms on a single column pair (i, j) applied to each of its category tupels (q, h).

The multinomial neighborhood is the power set of the column pair subset D and the category tupel subset $C^{(i,j)}. \label{eq:constant}$

$$\mathcal{A}_{B}_{(g,h)}^{(i,j)}(B) = D \times C^{(i,j)}$$

	(1,2)	(1,3)	(1,4)	(2,3)	(2,4)	(3,4)	(i,j)
(0,1)	X		Х				
(0,2)	X				Х		
(1,2)	x	х					
(g,h)							

- Investigate the behavior of the algorithm.
 - First rule for small data sizes.
 - Second rule for big data sizes.
- Check required...
 - Burn-in period (stationarity)
 - Rejection rates of the MH
 - Step size
- Develop quasi-exact tests for the family of partial credit models.

Y. Chen, P. Diaconis, S.P. Holmes, and J.S. Liu. Sequential Monte Carlo Methods for Statistical Analysis of Tables. *Journal of the American Statistical Association*, 100(469):109–120, 2005.

Y. Chen, I.H. Dinwoodie, and S. Sullivant. Sequential Importance Sampling for Multiway Tables. The Annals of Statistics, 34(1):523–545, 2006.

Y. Chen and D. Small. Exact Tests for the Rasch Model via Sequential Importance Sampling. *Psychometrika*, 70(1):11–30, 2005.

G.N. Masters. A Rasch Model for Partial Credit Scoring. Psychometrika, 47(2):149–174, 1982.

I. Ponocny. Nonparametric goodness-of fit tests for the Rasch model. *Psy-chometrika*, 66:437–460, 2001.

T. Snijders. Enumeration and Simulation Methods for 0-1 Matrices with Given Marginals. Psychometrika, 56(3):397–417, 1991.

N.D. Verhelst. An efficient MCMC algorithm to sample binary matrices with fixed marginals. *Psychometrika*, 73:705–728, 2008.

Psychoco 2012

21

Psychoco 2012