Rasch model

Properties

- unidimensionality/homogenous items
- conditional independence (local independence)
- specific objectivity/sample independence
- strictly monotone increasing item characteristic function
- sufficient statistics

Psychoco 2012, Ingrid Koller \& Reinhold Hatzinger
 Quasi-exact tests

Quasi-exact tests?
with quasi-exact tests it is possible to test the Rasch-model (RM) also with small samples

Sampling binary matrices
description of MCMC method: Kathrin Gruber
development of test-statistics (T) for the dichotomous RM

- Ponocny $(1996,2001)$
- Chen \& Small (2005)
- Verhelst (2008)
- Koller \& Hatzinger (in prep.)

General procedure for the T-statistics

- \mathbf{A}_{0} is the observed matrix with the margins r_{v} and c_{i} where $r_{v}=\sum_{i} x_{v i}$ (person score) and $c_{i}=\sum_{v} x_{v i}$ (item score)
- $\Sigma_{r c}$ is the set of all matrices with fixed r and c (sample space)

Algorithm

- sample $s=1, \ldots, S$ matrices \mathbf{A}_{s} from $\Sigma_{r c}$
- calculate T_{0} for the observed matrix \mathbf{A}_{0}
- calulate T_{1}, \ldots, T_{S} for all sampled matrices $\mathbf{A}_{1}, \ldots, \mathbf{A}_{S}$
- determine your p-value by

$$
p=\sum_{s=1}^{S} t_{s} / S \quad \text { where } t_{s}= \begin{cases}1, & T_{s}\left(\mathbf{A}_{s}\right) \geq T_{0}\left(\mathbf{A}_{0}\right) \\ 0, & \text { else }\end{cases}
$$

Multidimensionality

$T_{11 m}$: small inter-item-correlations
same equation as for T_{11}, but modified test:

$$
p=\sum_{s=1}^{S} t_{s} / S \quad \text { where } \quad t_{s}= \begin{cases}1, & T_{s}\left(\mathbf{A}_{s}\right) \leq T_{0}\left(\mathbf{A}_{0}\right) \\ 0, & \text { else }\end{cases}
$$

if $r_{i j}$ in \mathbf{A}_{0} is small, then the difference $r_{i j}-\widetilde{r}_{i j}$ is also small only a few T_{s} show the same or a smaller difference than T_{0} small correlations between items indicate multidimensionality

Conditional dependence

T_{11} : large inter-item correlations

$$
T_{11}(\mathbf{A})=\sum_{i j}\left|r_{i j}-\widetilde{r}_{i j}\right| \quad \text { where } \quad \widetilde{r}_{i j}=\frac{\sum_{s=1}^{S} r_{i j}}{S}
$$

$r_{i j} .$. the inter-item-correlation for item i and item j
$\tilde{r}_{i j} \ldots$ mean of $r_{i j}$ from all simulated matrices

$$
p=\sum_{s=1}^{S} t_{s} / S \quad \text { where } \quad t_{s}= \begin{cases}1, & T_{s}\left(\mathbf{A}_{s}\right) \geq T_{0}\left(\mathbf{A}_{0}\right) \\ 0, & \text { else }\end{cases}
$$

if $r_{i j}$ in \mathbf{A}_{0} is large, then the difference $r_{i j}-\widetilde{r}_{i j}$ is also large only a few T_{s} show the same or a higher difference than T_{0}
highly correlated items indicate violation of conditional independence

Psychoco 2012, Ingrid Koller \& Reinhold Hatzinger

Conditional dependence \& Multidimensionality

Conditional dependence
T_{1} : many equal responses

- count the number of $\{00\}$ and $\{11\}$ patterns in items i and j
- how many T_{s} have same or a higher value than T_{0}

$$
T_{1}(\mathbf{A})=\sum_{v} \delta_{i j} \quad \text { where } \quad \delta_{i j}= \begin{cases}1, & x_{v i}=x_{v j} \\ 0, & x_{v i} \neq x_{v j}\end{cases}
$$

many equal responses indicate violation of conditional independence

Multidimensionality:

$T_{1 m}$: few equal responses

- how many T_{s} have same or a lower value than T_{0} few equal responses indicate that the correlation between items is too small, unidimensionality assumption may be violated

Learning

$T_{1 \ell}$: many $\{11\}$ patterns (e.g., Koller \& Hatzinger)

- count only $\{11\}$ patterns as opposed to T_{1}

$$
T_{1 l}(\mathbf{A})=\sum_{v} \delta_{i j} \quad \text { where } \quad \delta_{i j}= \begin{cases}1, & x_{v i}=x_{v j}=1 \\ 0 & \text { else }\end{cases}
$$

- how many T_{s} have same or a higher value than T_{0}
if person has learned from one item $\left(x_{v i}=1\right)$ then the probability $p\left(x_{v j}=1\right)$ is increased for a positive reponse to another item j

Psychoco 2012, Ingrid Koller \& Reinhold Hatzinger

Multidimensionality \quad wiversität

Multidimensionality

$T_{M U}$: correlation of rawscore for item subsets
(Koller \& Hatzinger)

- if two sets of items I are unidimensional, r_{v}^{I} of set I and r_{v}^{J} of set J should be positiv correlated
- with increasing r_{v}^{I} also r_{v}^{J} should be increasing
- count the number of correlations $T_{s} \leq T_{0}$

$$
T_{M U}(\mathbf{A})=\operatorname{cor}\left(r_{v}^{I}, r_{v}^{J}\right) \quad=\quad r_{v}^{I}=\sum_{i \in I} x_{v i}
$$

Conditional dependence

T_{2} : high dispersion of rawscore r_{v} for a set of items

- if items are dependent, the variance of r_{v} is large
- because of $\operatorname{var}(z)=\operatorname{var}(x)+\operatorname{var}(y)+2 * \operatorname{cov}(x, y)$
- define a set of items I and calculate $r_{v}^{(I)}$
- count how many $T_{s} \geq T_{0}$

$$
T_{2}(\mathbf{A})=\operatorname{var}_{v}\left(r_{v}^{(I)}\right) \quad \text { where } \quad r_{v}^{(I)}=\sum_{i \in I} x_{v i}
$$

other possibilities: range, mean absolute deviation, median absolute deviation.

Multidimensionality:

$T_{2 m}$: low dispersion of rawscore r_{v} for a set of items

- count how many $T_{s} \leq T_{0}$

Psychoco 2012, Ingrid Koller \& Reinhold Hatzinger
Subgroup-invariance

Subgroup-invariance

T_{10} : based on counts on certain item responses

- $n_{i j} / n_{j i}$ is proportional to the ratio of $\exp \left(\beta_{i}\right) / \exp \left(\beta_{j}\right)$
- no parameter differences for focal-group foc and referencegroup ref: $n_{i j}^{r e f} / n_{j i}^{r e f}=n_{i j}^{\text {foc }} / n_{j i}^{\text {foc }}$
- sum of differences for all pairs of items
- counts of $T_{s} \geq T_{0}$

$$
T_{10}(\mathbf{A})=\sum_{i j}\left|n_{i j}^{r e f} n_{j i}^{f o c}-n_{j i}^{r e f} n_{i j}^{f o c}\right|
$$

- if the parameter differ across groups, the difference should be increasing

Note:

- external criterion (e.g., gender): uniform DIF
- internal criterion (e.g., rawscore-median): discrimination, guessing, fal-
split on specified item: conditional dependence

Subgroup-invariance

T_{4} :counts of positive responses in person subgroups

- assumption: in one group of persons G one or more items are easier/more difficult as expected in the RM
- count the number of persons who solved these items
- easier: counts of $T_{s} \geq T_{0}$
- more difficult:counts of $T_{s} \leq T_{0}$

$$
T_{4}(\mathbf{A})=\sum_{v \in G} x_{v i}
$$

Note:

- tests the same assumptions as T_{10}

Unfolding response structure - monotonicity

T_{6} : responses in three person subgroups

- similar to T_{4}.
- split the sample in three rawscore groups and count the number of positive responses only in the middle group G_{m}
- easier (reversed U-shape): counts of $T_{s} \geq T_{0}$
- more difficult (U-shape): counts of $T_{s} \leq T_{0}$

$$
T_{6}(\mathbf{A})=\sum_{v \in G_{m}} x_{v i}
$$

Subgroup-invariance

$T_{D T F}$: based on item differences on item sumscores
(Koller \& Hatzinger)

- similar to T_{4}, but with the possibility to test DTF (all items in a test shows subgroup-invariance)
- calculate the sumscores (c) for one item (or a group of items)
for the reference group $c_{i}^{r e f}$ and for the focal group $c_{i}^{\text {foc }}$
- calculate the difference of c between focal and reference group.
- easier: counts of $T_{s} \geq T_{0}$
- more difficult:counts of $T_{s} \leq T_{0}$

$$
T_{D T F}(\mathbf{A})=\sum_{i \in I}\left(c_{i}^{r e f}-c_{i}^{f o c}\right)^{2}
$$

Note:

- tests the same assumptions as $T_{10} \& T_{4}$

Psychoco 2012, Ingrid Koller \& Reinhold Hatzinger
Item discrimination

Item discrimination

T_{5} : rawscore for persons with $x_{v i}=0$ for a certain item

- include persons who answer with 0 to a certain item
- sum r_{v} of the remaining items for group $x_{v i}=0$
- counts of $T_{s} \geq T_{0}$

$$
T_{5}=(\mathbf{A})=\sum_{v \mid x_{v i}=0} r_{v}
$$

- if persons with high ability ($r_{v}=$ high) fail to solve a certain item, this item may show too low discrimination, falsity, or indicate multidimensionality

Constructing new test statistics

- based on substantive considerations
- based on statistics, where the approximation to the asymptotic distribution is questionable
- monotone transformations example: point-biserial correlation
- simplification example: Mantel-Haenszel statistic

Example: Mantel-Haenszel statistic

tests for conditional independence of two nominal variables across several strata (e.g., $2 \times 2 \times C$ tables)

$$
M H=\frac{\left(\sum_{c} N_{11 c}-\sum_{c} E\left(N_{11 c} \mid n_{c}\right)\right)^{2}}{\left.\operatorname{Var}\left(\sum_{c} N_{11 c} \mid n_{c}\right)\right)} \quad \underset{\sim}{a s .} \quad \chi_{d f=1}^{2}
$$

can be used to test various RM violations.

Verguts \& DeBoeck (2001):
sufficiency, unidimensionality, item dependence
Mantel-Haenszel statistic may be simplified to

$$
T_{M H}=\left(\sum_{c} n_{11 c}-\sum_{c} \tilde{n}_{11 c}\right)^{2} \quad \text { where } \tilde{n}_{11 c}=\sum_{s=1}^{S} n_{11 c} / S
$$

Example: point-biserial correlation

$$
r_{p b i s}=\frac{\bar{r}_{0}-\bar{r}_{1}}{s_{r}} \sqrt{\frac{n_{0} n_{1}}{n(n-1)}}
$$

$$
\propto \quad\left(\frac{\sum r_{0}}{n_{0}}-\frac{\sum r_{1}}{n_{1}}\right) n_{0} n_{1}
$$

remove s_{r} and n (constant)
remove $\sqrt{ }$ is a monotone function $\left(n_{0}, n_{1} \geq 0\right)$

$$
T_{p b i s}(\mathrm{~A})=\frac{n_{1} \sum r_{0}-n_{0} \sum r_{1}}{\underline{n}_{0} n_{1}} \underline{n}_{0} n_{1} \quad=\quad n_{1} \sum r_{0}-n_{0} \sum r_{1}
$$

- counts $T_{s} \geq T_{0}$
- if persons with high ability ($r_{v}=$ high) fail to solve a certain item, this item may show too low discrimination, falsity, or indicate multidimensionality

Psychoco 2012, Ingrid Koller \& Reinhold Hatzinger
Implementation in R: eRm \& RaschSampler wiversität

Implementation in R: eRm \& RaschSampler

some statistics in eRm

- subgroup-invariance
- T_{10} based on counts on certain item responses (global test)
- T_{4} counts of positive responses in person subgroups (test on item level)
- conditional independence
- T_{11} large inter-item correlations (global test)
$-T_{1}$ many equal responses (test on item level)
- T_{2} high dispersion of rawscore r_{v} for a set of items (test on item level)

RaschSampler

- supply user defined function for arbitrary T-statistics Verhelst, Hatzinger, \& Mair (2007)

Example: conditional dependence

T_{1} : many equal responses (test on item level)

> library (eRm)
> library(RaschSampler)
> t1 <- NPtest(raschdat1, n=500, burn_in=500, step=32, seed=123, method="T1")
> print(t1,alpha=0.05)
Nonparametric RM model test: T1 (local dependence -
increased inter-item correlations
(counting cases with equal responses on both items)
Number of sampled matrices: 500
Number of Item-Pairs tested: 435
Item-Pairs with one-sided p < 0.05
$(1,9)(1,26)(4,12)(4,26)(4,28) \quad(8,13)(9,16)(10,24)$
$\begin{array}{llllllll}0.030 & 0.042 & 0.036 & 0.036 & 0.018 & 0.014 & 0.010 & 0.032\end{array}$
$(18,28)(21,22)(25,29)$
$0.032 \quad 0.004 \quad 0.002$

