Detecting Differential Item and Differential Step Functioning with Partial Credit Trees

Basil Abou El-Komboz, Achim Zeileis and Carolin Strobl

Differential Item Functioning (DIF)

is present when one or more items of a test

- > are easier or harder to solve for certain subjects
- even though they have the same latent trait

Outline

Detecting

DIF/DSF with

PCMtrees

Detecting

DIF/DSF with

PCMtrees

Testing for DIF in

the RM

Testing for DIF in the Rasch modelTesting for DIF
the RMStandard model testsStandard model testsModel-based recursive partitioningExtending the model-based recursive partitioning approachExtending the model-based recursive partitioning approachExtension to the Partial Credit Model (PCM)Differential item and step functioning in the PCMDif/DSF in the Cun)ordered threshold parameters in the PCMVisualization in Partial Credit treesSummaryExample: Verbal Aggression dataReferences

Summary

・ロ・・母・・ヨ・・ヨ・ ヨー うへぐ

Standard model tests

- tests for k given groups graphical test, Andersen's Likelihood-Ratio Test, Wald Tests
 - + straightforward interpretation
 - $-\,$ only detect DIF in specified groups
- latent-class approach
 Rost's "Mixed" (mixture) Rasch model
 - $\ + \ identifies previously unknown groups with DIF$
 - groups are not directly interpretable
 - \Rightarrow 2nd step: describe groups with covariates (e.g., Cohen and Bolt, 2005)

Detecting

DIF/DSF with

PCMtrees

Standard tests

partitioning

Standard model tests

Standard model tests

Detecting

DIF/DSF with

- tests for k given groups graphical test, Andersen's Likelihood-Ratio Test, Wald Tests
 - + straightforward interpretation
 - only detect DIF in specified groups
- latent-class approach
 - Rost's "Mixed" (mixture) Rasch model
 - + identifies previously unknown groups with DIF
 - groups are not directly interpretable
 - \Rightarrow 2nd step: describe groups with covariates (e.g., Cohen and Bolt, 2005)

Approach used in psychotree takes care of...

 \blacktriangleright selecting splitting variables \Leftrightarrow parameter instability tests

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

- selecting optimal catpoints
- other multiple testing issues
 - between variables in each split
 - over successive splits

(Zeileis and Hornik, 2007; Zeileis, Hothorn, and Hornik, 2008;

Strobl, Malley, and Tutz, 2009; Strobl, Kopf, and Zeileis, 2010a,b)

DIF/DSF with PCMtrees

Detecting

the RM

Standard tests

partitioning

Extension to the PCM

DIF/DSF in the PCM (Un)ordered threshold parameters Visualization

Example: Verbal Aggression data

Summary

References

Detecting DIF/DSF with PCMtrees

Testing for DIF in the RM

Standard tests

Model-based recursive partitioning

Extension to the

DIF/DSF in the PCM (Un)ordered threshold

parameters

Freedow Verlag

Summary

References

Extending the model-based partitioning approach

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Detecting

DIF/DSF with

PCMtrees

Extension to the

Detecting

DIF/DSF with PCMtrees

DIF/DSF in the PCM

PCM

Extending the model-based partitioning approach

Rasch model

- ▶ scores are 0 or 1
- ▶ each item has one location parameter = difficulty
- ▶ DIF means item is more/less difficult for certain group

Partial Credit model

- **•** scores are between 0 and m_i
- ▶ different parametrizations: e.g. *m_j* thresholds
- ▶ DIF means entire item is more/less difficult
- ► DSF means some steps are more/less difficult (may cancel out so there is no overall DIF)

(Un)ordered threshold parameters in the PCM δ_{i1} δ_{j2} δ_{i3} 0.8 $\mathsf{P}(u_{ij}{=}c|\theta_i,\delta_{j1},...,\delta_{j3})$ 0.6 0 2 3 0.4 0.2 0.0 -5 10 15 0 5 $P(u_{ij} = c | \theta_i, \delta_{j1}, \dots, \delta_{jm_j}) = \frac{e^{\sum_{k=0}^{c} (\theta_i - \delta_{jk})}}{\sum_{l=0}^{m_j} e^{\sum_{k=0}^{c} (\theta_i - \delta_{jk})}}$

Extending the model-based partitioning approach

Detecting

DIF/DSF with PCMtrees Rasch trees gender p = 0.006 Node 3 (n = 35) ode 4 (n = 74) Node 5 (n = 91 4.66 4.6 Extension to the PCM -2.68 20 20 Partial Credit trees gender = 0.006 Detecting DIF/DSF with PCMtrees partitioning (Un)ordered threshold parameters with $\sum_{k=0}^{0} (\theta_i - \delta_{ik}) = 0$

(Un)ordered threshold parameters in the PCM

Visualization in Partial Credit trees DIF/DSF with DIF/DSF with PCMtrees Category Characteristic Curves partitioning (Un)ordered threshold parameters 0.6 0.4 0.2 Latent Trait Cat. 0 Cat. 1 Cat. 2

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ 三目 - のへで

Detecting

Detecting

DIF/DSF with

PCMtrees

Visualization in Partial Credit trees **Category Characteristic Curves**

Visualization in Partial Credit trees

Category Characteristic Curves 0.2 0. . . 0. 0 0.8 Latent Trait Cat. 0 Cat. 1 Cat. 2

Visualization ◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ ○ 豆 ○ の Q @ ♪ Detecting DIF/DSF with PCMtrees partitioning Visualization

Detecting

PCMtrees

Visualization in Partial Credit trees

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Example: Verbal Aggression data

> data("VerbalAggression", package = "psychotools")
responses of 316 subjects to frustrating situations

- here: situation 4 (self-to-blame situation)
 "The operator disconnects me when I used up my last 10 cents for a call."
- items: 3 verbally aggressive responses (curse, scold, shout)
 × 2 behavioural models (want, do)
- response categories: 0 = no, 1 = perhaps, 2 = yes
- covariates: gender, trait anger (assessed by the Dutch adaptation of the state-trait anger scale STAS)

De Boeck and Wilson (2004), Smits, De Boeck, and Vansteelandt (2004), dichotomized version also available in package difR (Magis, Beland, and Raiche, 2011)

Partial Credit tree (tweaked a little for visualization)

E 990

Summary

model-based recursive partitioning

- can identify groups of subjects with DIF and DSF that
 - need not be pre-specified
 - are formed by (combinations of) observed covariates
 - with optimally selected cutpoints

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Summary

model-based recursive partitioning

- can identify groups of subjects with DIF and DSF that
 - need not be pre-specified
 - are formed by (combinations of) observed covariates
 - with optimally selected cutpoints
- available for
 - Rasch model
 - Partial Credit model
 - and more to come
- results are directly interpretable

Summary

Detecting

DIF/DSF with

PCMtrees

model-based recursive partitioning

- can identify groups of subjects with DIF and DSF that
 - need not be pre-specified
 - ▶ are formed by (combinations of) observed covariates
 - with optimally selected cutpoints
- available for

Summary

available for

Rasch model

Partial Credit model

and more to come

- Rasch model
- Partial Credit model
- and more to come

model-based recursive partitioning

need not be pre-specified

with optimally selected cutpoints

Detecting DIF/DSF with PCMtrees

Summarv

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Detecting DIF/DSF with

PCMtrees

partitioning

Summary

results are directly interpretable, but keep in mind: observed covariates may be proxies for the true causes e.g.: gender \Leftrightarrow socialization, district \Leftrightarrow first language

can identify groups of subjects with DIF and DSF that

are formed by (combinations of) observed covariates

Aggression data Summary

Summarv

Detecting

DIF/DSF with

PCMtrees

References I

- Cohen, A. and D. Bolt. "A Mixture Model Analysis of Differential Item Functioning." Journal of Educational Measurement 42 (2005): 133–148.
- De Boeck, P. and M. Wilson, editors. *Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach.* New York: Springer, 2004.
- Fox, John and Jangman Hong. "Effect Displays in R for Multinomial and Proportional-Odds Logit Models: Extensions to the effects Package." Journal of Statistical Software 32 (2009): 1-24.

References III

- Strobl, C., J. Kopf, and A. Zeileis. A New Method for Detecting Differential Item Functioning in the Rasch Model. Technical Report 92, Department of Statistics, Ludwig-Maximilians-Universität München, Germany, 2010. URL: http://epub.ub.uni-muenchen.de/11915/.
- Strobl, C., J. Kopf, and A. Zeileis. "Wissen Frauen weniger oder nur das Falsche? Ein statistisches Modell für unterschiedliche Aufgaben-Schwierigkeiten in Teilstichproben." *Allgemeinbildung in Deutschland Erkenntnisse aus dem SPIEGEL Studentenpisa-Test*. Ed.
 S. Trepte and M. Verbeet Wiesbaden: VS Verlag, 2010, 255–272.

DIF/DSF with PCMtrees References II

Aggression data

Detecting

DIF/DSF with

PCMtrees

partitioning

References

References

- Magis, D., S. Beland, and G. Raiche. *difR: Collection of methods to detect dichotomous differential item functioning (DIF) in psychometrics*, 2011. R package version 4.1.
- Mair, Patrick, Reinhold Hatzinger, and Marco Maier. eRm: *Extended Rasch Modeling.*, 2010. R package version 0.13-0.
- Smits, D., P. De Boeck, and K. Vansteelandt. "Inhibition of Verbally Aggressive Behaviour." *European Journal of Personality* 18 (2004).

Detecting DIF/DSF with PCMtrees

Detecting

DIF/DSF with

PCMtrees

Testing for DIE is

References

the RM

Model-based recursive partitioning

Extension to the PCM

DIF/DSF in the PCM (Un)ordered threshold parameters Visualization Example: Verbal Aggression data

Summary

References

References IV

References IV

- Strobl, C., J. Malley, and G. Tutz. "An Introduction to Recursive Partitioning: Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests." *Psychological Methods* 14 (2009): 323–348.
- Zeileis, A., T. Hothorn, and K. Hornik. "Model-Based Recursive Partitioning." *Journal of Computational and Graphical Statistics* 17 (2008): 492–514.
- Zeileis, Achim and Kurt Hornik. "Generalized M-Fluctuation Tests for Parameter Instability." *Statistica Neerlandica* 61 (2007): 488–508.

◆□ > ◆□ > ◆豆 > ◆豆 > □ = − のへで