A Bayesian Test for the "Hot Hand"

Darja Tutschkow¹, Conor Dolan², Gilles Dutilh², Ruud Wetzels², Sophie von der Sluis³, Eric-Jan Wagenmakers²

> Darja Tutschkow¹ darja.tutschkow@student.uni-tuebingen.de

> > ¹Eberhard Karls Universität Tübingen

²University of Amsterdam

³Free University, Amsterdam

2/9/2012

2005 Batting Outcomes from Carlos Guillen

Is Carlos Guillen a streaky player?

- "The ,hot hand' and ,streak shooting'-terms refer to the belief that the performance of a player during a particular period is significantly better than could be expected on the basis of the player's overall record." (Gilovich, Vallone and Tversky, 1985)
- The same claim was made by Gilden & Wilson (1995, Cognitive Psychology) about people's performance in simple perceptual tasks.

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Outline

- Current tests for streakiness
- A Bayesian test for streakiness
- Application to real data
- Easy to detect streakiness?

Outline

Current Tests for Streakiness Examples

- Current tests for streakiness
- A Bayesian test for streakiness
- Application to real data
- Easy to detect streakiness?

- The longest run of hits (Albert, 2008)
- Runs test (Gillovich, Valone & Tversky, 1985)
- Test of stationarity (Gillovich, Valone & Tversky, 1985)
- Black statistic (Albert, 2008)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めへで

Current Tests for Streakiness Problems

- Existing tests are mostly classical or frequentist, and only consider the null hypothesis.
- The tests have very low power.
- This means that it is not very informative when one "fails to reject the null hypothesis".
- The tests sometimes use ad-hoc division of the data in epochs. But the size of the epoch affects the result (black statistic).

• Current tests for streakiness

- A Bayesian test for streakiness
- Application to real data
- Easy to detect streakiness?

Outline

A Bayesian Test for Streakiness

A Bayesian Test for Streakiness The HMM

- We want to assess the evidence for and against the hypothesis of streaky performance.
- We contrast two models:
 - The constant-performance model(CpM)
 - A three-parameter hidden Markov model(HMM) this model is in line with one's intuition of streakiness.

• Assume a state space $\{S_t : t \in \mathbb{N}\}$ with two possible states $S_t \in \{0,1\}$:

• The state space $\{S_t : t \in \mathbb{N}\}$ satisfies the Markov property: $Pr(S_t = s_t | S_{(t-1)} = s_{(t-1)}, \dots, S_1 = s_1) =$ $Pr(S_t = s_t | S_{(t-1)} = s_{(t-1)})$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ わぐの

A Bayesian Test for Streakiness The HMM

where

- $p_h = Pr(1|S_t = 1)$ is the probability of a hit in the hot state
- $p_c = Pr(1|S_t = 0)$ is the probability of a hit in the cold state
- $\alpha = Pr(S_t = 1 | S_{(t-1)} = 0) = Pr(S_t = 0 | S_{(t-1)} = 1)$ is the probability of switchig between states

A Bayesian Test for Streakiness Bayes Factor

- After seeing the data, which model is preferable?
- The one with the higher posterior probability!

 $\frac{Pr(HMM|Data)}{Pr(CpM|Data)} = \frac{Pr(Data|HMM)}{Pr(Data|CpM)}$

- Before seeing the data both models are assumed to be equally likely $\Rightarrow \frac{Pr(HMM)}{Pr(CpM)} = 1$
- To choose a model we compute the Bayes factor (BF)

 $\frac{Pr(Data|HMM)}{Pr(Data|CpM)}$

- The Bayes factor is the change from prior to posterior odds brought about by the data.
- Quantifies the evidence for one versus the other model provided by the data.

A Bayesian Test for Streakiness Bayes Factor

 $\frac{\Pr(\textit{Data}|\textit{HMM})}{\Pr(\textit{Data}|\textit{CpM})} = \frac{\int_0^1 \int_0^1 \int_0^{p_h} \Pr(\textit{Data}|(p_c, p_h, \alpha)) \Pr(p_c) \Pr(p_h) \Pr(\alpha) dp_c dp_h d\alpha}{\int_0^1 \Pr(\textit{Data}|p) \Pr(p) dp}$

- with $\alpha, p_h, p_c \in (0, 1)$ and $p_h > p_c$.
- we assume independent uniform priors for p_h, p_c and α
- By averaging over the likelihood we discount for model complexity (Myung and Pitt, 1997)

A Bayesian Test for Streakiness Complications

- Parameter point estimation is useless in many situations because the parameters are highly correlated.
- For example or a paramter value of $\alpha = .5$, p_h and p_c are in perfect tradeoff.

• But this is irrelevant for our test.

・ロト ・ 日 ・ モ ・ モ ・ ・ 日 ・ うへで

Outline

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Application to Real Data Flash Data (Gilden & Wilson, 1995)

- Current tests for streakiness
- A Bayesian test for streakiness
- Application to real data
- How easy is it to detect streakiness?

- 36 time series, each with 500 trials
- each trail involves a brightness discrimination judgment, and is scored as "correct" or "incorrect"
- we compared the results of an often used test for streakiness runs test with the Bayes factor

Application to Real Data Runs z Score

- 1 The idea: What is the distribution of runs (clusters of 1's and 0's) under a constant hitting probability?
- 2 The amount of runs R is normally distributed,
 - $R \sim N(\frac{2n_1n_2}{n} + 1, \frac{2n_1n_2(2n_1n_2 n)}{n^2(n-1)})$ with $n_1 =$ "runs of hits", $n_2 =$ "runs of misses", n= "sequence length"
- 3 If runs z score < -1.65 there are significantely fewer runs than would be expected under a constant hitting probability.

log Bayes factor

• Runs z score: 48% of the time series are streaky

-2 -1

・ロト・西ト・ヨト・ヨー うんの

æ

- Runs z score: 48% of the time series are streaky
- Log Bayes factor: 22% of the time series are streaky

Outline

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ●

- Current tests for streakiness
- A Bayesian test for streakiness
- Application to real data
- How easy is it to detect streakiness?

How Easy is it to Detect Streakiness?

- 1 Simulated data from the HMM
 - for different parameter values of α and p_c , keeping $p_h = .7$ constant. (Former simulation studies showed the difference between p_c and p_h is more important than their absolute values)
 - for different lengths of data sets
- 2 Simulated data from the CpM
 - for different values of *p*
 - for different lengths of data sets
- 3 Calculated the log Bayes factor
- 4 Calculated the runs z score to compare the results

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三回 めんら

How Easy is it to Detect Streakiness? The Bayes factor

- ・ロ・・母・・ヨ・・ヨ・ ヨー うみぐ

How Easy is it to Detect Streakiness? The Bayes factor

How Easy is it to Detect Streakiness? Runs z Score

How Easy is it to Detect Streakiness?

How Easy is it to Detect Streakiness? The Bayes factor

Data from the CpM

How Easy is it to Detect Streakiness? Runs z Score

(ロ) (型) (E) (E) (E) (の)

- For differences in the hitting probabilities smaller than .3 it is unlikely to detect streakiness even for large datasets.
- The Bayes factor is not able to discriminate between small and high values of $\alpha.$
- But maybe it would be more in line with the definition of streakiness to assume $\alpha < .5$
- In general the results of the Bayesian test and the runs test show the same pattern.
- But with the Bayes factor you can also get evidence in favour of the CpM.

• The higher the probability of a hit under the CpM, the bigger the evidence in favour of the CpM when taking the Bayes factor.

- The runs test is not sensitive to that because it considers just the null hypothesis.
- Given a small value of α sticky states the evidence in favour of the HMM gets bigger with a bigger difference between p_h and p_c.
- The difference in the hitting probability between "hot" and "cold" states has to be quite big and the states have to be sticky to have a chance of detecting streakiness.

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● のへで

Summary

2005 Batting Outcomes from Carlos Guillen

Is Carlos Guillen a streaky player?

2005 Batting Outcomes from Carlos Guillen

- log Bayes factor = .275 \Rightarrow both models are alomst equally likely given this data
- runs z score = $-.811 \Rightarrow$ no significant evidence for streakiness

Thanks for your attention!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで