Title: Meta-Regression Trees Authors: Elise Dusseldorp, Xinru Li, Xiaogang Su, Juan C. Gonzalez, Jacqueline Meulman Abstract: In meta-analysis, the aim is to estimate an overall effect size across studies. But is this overall effect size a good representative of the “true” underlying effect? When the study effect sizes included in the meta-analysis are considered to be homogeneous, the answer to this question is yes. But often, the answer is no, because there is too much heterogeneity in the data. To explain this heterogeneity, meta-regression is performed and study characteristics are used as predictors. However a disadvantage of meta-regression is that interactions are often ignored. In the current study, we propose meta-regression trees, estimated by the R-package metacart, to detect homogeneous subgroups of studies with regard to their effect sizes. The resulting meta-regression tree represents interaction effects between the characteristics and the leaves of the tree are the homogeneous subgroups. However, due to the algorithmic nature of the method, confidence intervals of the effects in the subgroups are too optimistic, the test of the moderator effect(s) is too liberal, and the search strategy may result in local optima. We propose three new extensions to overcome these problems, involving the smooth sigmoid surrogate strategy for splitting, a special bootstrap procedure and a permutation test. By means of a simulation study the performance of these three extensions was investigated. In addition, the new method was applied to a real meta-analytic data set.